数据分析师专栏中的机器学习的源代码

上传者: lys_828 | 上传时间: 2022-04-19 19:07:48 | 文件大小: 54.72MB | 文件类型: ZIP
针对于博客中评论一直有人需求源代码,这里上传源代码供学习参考,对于数据,也在资源里(数据分析师专栏中的机器学习的补充数据)可以找到,加油学习

文件下载

资源详情

[{"title":"( 80 个子文件 54.72MB ) 数据分析师专栏中的机器学习的源代码","children":[{"title":"chapter6","children":[{"title":"adspy_shared_utilities.py <span style='color:#111;'> 9.74KB </span>","children":null,"spread":false},{"title":"shuiguo.jpg <span style='color:#111;'> 410.32KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"adspy_shared_utilities.cpython-38.pyc <span style='color:#111;'> 7.09KB </span>","children":null,"spread":false},{"title":"adspy_shared_utilities2.cpython-38.pyc <span style='color:#111;'> 8.14KB </span>","children":null,"spread":false}],"spread":true},{"title":"KNN实例2(带有svm的算法).ipynb <span style='color:#111;'> 3.15MB </span>","children":null,"spread":false},{"title":"shuiguo.txt <span style='color:#111;'> 2.31KB </span>","children":null,"spread":false},{"title":"adspy_shared_utilities2.py <span style='color:#111;'> 11.36KB </span>","children":null,"spread":false},{"title":"KNN实例2.ipynb <span style='color:#111;'> 749.81KB </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"KNN实例2(带有svm的算法)-checkpoint.ipynb <span style='color:#111;'> 3.15MB </span>","children":null,"spread":false},{"title":"KNN实例2-checkpoint.ipynb <span style='color:#111;'> 737.06KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"chapter4","children":[{"title":"贝叶斯_伯努利.ipynb <span style='color:#111;'> 94.75KB </span>","children":null,"spread":false},{"title":"贝叶斯_高斯.ipynb <span style='color:#111;'> 17.36KB </span>","children":null,"spread":false},{"title":"贝叶斯算法_高斯.ipynb <span style='color:#111;'> 16.97KB </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"贝叶斯_伯努利-checkpoint.ipynb <span style='color:#111;'> 72.16KB </span>","children":null,"spread":false},{"title":"贝叶斯_多项式-checkpoint.ipynb <span style='color:#111;'> 265.38KB </span>","children":null,"spread":false},{"title":"贝叶斯算法_高斯-checkpoint.ipynb <span style='color:#111;'> 16.87KB </span>","children":null,"spread":false}],"spread":true},{"title":"贝叶斯_多项式.ipynb <span style='color:#111;'> 265.75KB </span>","children":null,"spread":false}],"spread":true},{"title":"chapter7","children":[{"title":"随机森林案例演示.ipynb <span style='color:#111;'> 392.35KB </span>","children":null,"spread":false},{"title":"决策树01.ipynb <span style='color:#111;'> 24.42KB </span>","children":null,"spread":false},{"title":"tree1.dot <span style='color:#111;'> 6.57KB </span>","children":null,"spread":false},{"title":"bagging.mp4 <span style='color:#111;'> 6.62MB </span>","children":null,"spread":false},{"title":"tree5.dot <span style='color:#111;'> 5.46KB </span>","children":null,"spread":false},{"title":"boost.mp4 <span style='color:#111;'> 7.41MB </span>","children":null,"spread":false},{"title":"tree2.dot <span style='color:#111;'> 3.43KB </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"随机森林案例演示-checkpoint.ipynb <span style='color:#111;'> 392.35KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"chapter9","children":[{"title":"kmean.mp4 <span style='color:#111;'> 3.31MB </span>","children":null,"spread":false},{"title":"Mall_Customers.csv <span style='color:#111;'> 3.69KB </span>","children":null,"spread":false},{"title":"kmean算法.ipynb <span style='color:#111;'> 473.50KB </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"kmean算法-checkpoint.ipynb <span style='color:#111;'> 473.50KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"chapter2","children":[{"title":"逻辑回归练习1 .ipynb <span style='color:#111;'> 23.70KB </span>","children":null,"spread":false},{"title":"逻辑回归练习#2.ipynb <span style='color:#111;'> 1.06MB </span>","children":null,"spread":false}],"spread":true},{"title":"chapter8","children":[{"title":"PCA1.mp4 <span style='color:#111;'> 14.51MB </span>","children":null,"spread":false},{"title":"Tutorial_Images","children":[{"title":"20150304195508947.jpg <span style='color:#111;'> 122.98KB </span>","children":null,"spread":false},{"title":"iris_2_component_PCA.png <span style='color:#111;'> 153.47KB </span>","children":null,"spread":false},{"title":"iris_keep_2_components.png <span style='color:#111;'> 164.27KB </span>","children":null,"spread":false},{"title":"img1.png <span style='color:#111;'> 66.27KB </span>","children":null,"spread":false},{"title":"standardization.png <span style='color:#111;'> 179.40KB </span>","children":null,"spread":false},{"title":"PCA_timingNew.png <span style='color:#111;'> 38.20KB </span>","children":null,"spread":false},{"title":"20150304195359136.png <span style='color:#111;'> 52.84KB </span>","children":null,"spread":false},{"title":"20150304195359136 <span style='color:#111;'> 52.84KB </span>","children":null,"spread":false},{"title":"20150304195508947 <span style='color:#111;'> 122.98KB </span>","children":null,"spread":false},{"title":"loadData.png <span style='color:#111;'> 29.01KB </span>","children":null,"spread":false},{"title":"PCA_timingOLD.png <span style='color:#111;'> 30.89KB </span>","children":null,"spread":false},{"title":"iris_concatenating_df.png <span style='color:#111;'> 182.79KB </span>","children":null,"spread":false}],"spread":false},{"title":"PCA案例解析.ipynb <span style='color:#111;'> 107.28KB </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"PCA案例解析-checkpoint.ipynb <span style='color:#111;'> 199.81KB </span>","children":null,"spread":false}],"spread":true},{"title":"PCA2.mp4 <span style='color:#111;'> 6.06MB </span>","children":null,"spread":false}],"spread":true},{"title":"chapter1","children":[{"title":"线性回归分析-案例1-媒体投放.ipynb <span style='color:#111;'> 171.17KB </span>","children":null,"spread":false},{"title":"车辆回归分析模型.ipynb <span style='color:#111;'> 892.93KB </span>","children":null,"spread":false},{"title":"时序数据分析#1.ipynb <span style='color:#111;'> 229.23KB </span>","children":null,"spread":false},{"title":"时序数据分析#2.ipynb <span style='color:#111;'> 117.63KB </span>","children":null,"spread":false},{"title":"基础线性模型介绍.ipynb <span style='color:#111;'> 284.29KB </span>","children":null,"spread":false},{"title":"多项式回归.ipynb <span style='color:#111;'> 86.26KB </span>","children":null,"spread":false},{"title":"L1和L2惩罚.ipynb <span style='color:#111;'> 31.65KB </span>","children":null,"spread":false}],"spread":true},{"title":"chapter3","children":[{"title":"dt.mp4 <span style='color:#111;'> 12.69MB </span>","children":null,"spread":false},{"title":"决策树01.ipynb <span style='color:#111;'> 24.42KB </span>","children":null,"spread":false},{"title":"titanic_lv6.dot <span style='color:#111;'> 6.47KB </span>","children":null,"spread":false},{"title":"music-dt.dot <span style='color:#111;'> 1.26KB </span>","children":null,"spread":false},{"title":"决策树03.ipynb <span style='color:#111;'> 30.69KB </span>","children":null,"spread":false},{"title":"titanic_lv2.dot <span style='color:#111;'> 912B </span>","children":null,"spread":false},{"title":"titanic2.dot <span style='color:#111;'> 2.82KB </span>","children":null,"spread":false},{"title":"决策树02.ipynb <span style='color:#111;'> 17.62KB </span>","children":null,"spread":false},{"title":"music.joblib <span style='color:#111;'> 2.25KB </span>","children":null,"spread":false},{"title":"iris.joblib <span style='color:#111;'> 2.58KB </span>","children":null,"spread":false},{"title":"titanic.dot <span style='color:#111;'> 28.33KB </span>","children":null,"spread":false},{"title":"iris.dot <span style='color:#111;'> 2.06KB </span>","children":null,"spread":false}],"spread":false},{"title":"chapter5","children":[{"title":"adspy_shared_utilities.py <span style='color:#111;'> 9.74KB </span>","children":null,"spread":false},{"title":"KNN实例1.ipynb <span style='color:#111;'> 2.11MB </span>","children":null,"spread":false},{"title":"shuiguo.jpg <span style='color:#111;'> 410.32KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"adspy_shared_utilities.cpython-38.pyc <span style='color:#111;'> 7.09KB </span>","children":null,"spread":false},{"title":"adspy_shared_utilities2.cpython-38.pyc <span style='color:#111;'> 8.11KB </span>","children":null,"spread":false},{"title":"adspy_shared_utilities3.cpython-38.pyc <span style='color:#111;'> 7.96KB </span>","children":null,"spread":false},{"title":"adspy_shared_utilities4.cpython-38.pyc <span style='color:#111;'> 8.13KB </span>","children":null,"spread":false}],"spread":true},{"title":"shuiguo.txt <span style='color:#111;'> 2.31KB </span>","children":null,"spread":false},{"title":"KNN实例3.ipynb <span style='color:#111;'> 380.10KB </span>","children":null,"spread":false},{"title":"adspy_shared_utilities2.py <span style='color:#111;'> 11.29KB </span>","children":null,"spread":false},{"title":"KNN实例2.ipynb <span style='color:#111;'> 693.14KB </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"KNN实例2-checkpoint.ipynb <span style='color:#111;'> 670.40KB </span>","children":null,"spread":false},{"title":"KNN实例3-checkpoint.ipynb <span style='color:#111;'> 386.84KB </span>","children":null,"spread":false},{"title":"KNN实例1-checkpoint.ipynb <span style='color:#111;'> 2.09MB </span>","children":null,"spread":false}],"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明