[{"title":"( 41 个子文件 6.11MB ) contrastive.zip","children":[{"title":"contrastive","children":[{"title":"NLP作业","children":[{"title":"nlp-code-2","children":[{"title":"code-1-BertFlat-0.775","children":[{"title":"README.txt <span style='color:#111;'> 1.37KB </span>","children":null,"spread":false},{"title":"bert_networks.py <span style='color:#111;'> 8.44KB </span>","children":null,"spread":false},{"title":"submit.py <span style='color:#111;'> 1.77KB </span>","children":null,"spread":false},{"title":"bert_flat_main_gs.py <span style='color:#111;'> 1.06KB </span>","children":null,"spread":false},{"title":"log.txt <span style='color:#111;'> 88.06KB </span>","children":null,"spread":false},{"title":"bert_prepare.py <span style='color:#111;'> 8.28KB </span>","children":null,"spread":false},{"title":"bert_features.py <span style='color:#111;'> 2.24KB </span>","children":null,"spread":false},{"title":"bert_config.py <span style='color:#111;'> 552B </span>","children":null,"spread":false},{"title":"bert_flat_main.py <span style='color:#111;'> 6.90KB </span>","children":null,"spread":false},{"title":"bert_dataloader.py <span style='color:#111;'> 2.83KB </span>","children":null,"spread":false},{"title":"bert_test.py <span style='color:#111;'> 2.25KB </span>","children":null,"spread":false},{"title":"submit","children":[{"title":"MF1933096.tsv <span style='color:#111;'> 32.00KB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"code-1-HAN-0.751","children":[{"title":"README.txt <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"main_gs.py <span style='color:#111;'> 1.13KB </span>","children":null,"spread":false},{"title":"main.py <span style='color:#111;'> 8.20KB </span>","children":null,"spread":false},{"title":"submit.py <span style='color:#111;'> 1.77KB </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 8.91KB </span>","children":null,"spread":false},{"title":"networks.py <span style='color:#111;'> 6.90KB </span>","children":null,"spread":false},{"title":"prepare.py <span style='color:#111;'> 11.83KB </span>","children":null,"spread":false},{"title":"dataloader.py <span style='color:#111;'> 563B </span>","children":null,"spread":false},{"title":"log.txt <span style='color:#111;'> 41.63KB </span>","children":null,"spread":false},{"title":"essay_data","children":[{"title":"prompts-2.txt <span style='color:#111;'> 728B </span>","children":null,"spread":false},{"title":"test.tsv <span style='color:#111;'> 3.03MB </span>","children":null,"spread":false},{"title":"prompts-4.txt <span style='color:#111;'> 8.12KB </span>","children":null,"spread":false},{"title":"prompts-6.txt <span style='color:#111;'> 9.44KB </span>","children":null,"spread":false},{"title":"prompts-8.txt <span style='color:#111;'> 278B </span>","children":null,"spread":false},{"title":"prompts-7.txt <span style='color:#111;'> 339B </span>","children":null,"spread":false},{"title":".DS_Store <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false},{"title":"prompts-1.txt <span style='color:#111;'> 697B </span>","children":null,"spread":false},{"title":"train.tsv <span style='color:#111;'> 9.43MB </span>","children":null,"spread":false},{"title":"prompts-3.txt <span style='color:#111;'> 6.10KB </span>","children":null,"spread":false},{"title":"prompts-5.txt <span style='color:#111;'> 4.84KB </span>","children":null,"spread":false},{"title":"dev.tsv <span style='color:#111;'> 3.07MB </span>","children":null,"spread":false}],"spread":false},{"title":"config.py <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"submit","children":[{"title":"MF1933096.tsv <span style='color:#111;'> 31.99KB </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true},{"title":"文章评分器-2.docx <span style='color:#111;'> 124.35KB </span>","children":null,"spread":false},{"title":"report.pptx <span style='color:#111;'> 36.74KB </span>","children":null,"spread":false}],"spread":true},{"title":"相关论文","children":[{"title":"FedED Federated Learning via Ensemble Distillation for Medical Relation Extraction.pdf <span style='color:#111;'> 382.48KB </span>","children":null,"spread":false},{"title":"Text Classification by Contrastive Learning and Cross-lingual Data Augmentation for Alzheimer's Disease Detection.pdf <span style='color:#111;'> 663.86KB </span>","children":null,"spread":false},{"title":"Augmenting Data with Mixup for Sentence Classification.pdf <span style='color:#111;'> 337.54KB </span>","children":null,"spread":false}],"spread":true},{"title":"NLP对比学习研究步骤.txt <span style='color:#111;'> 4.32KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]