基于keras和tensorflow的入门级代码

上传者: loco1223 | 上传时间: 2021-06-01 14:41:04 | 文件大小: 1.7MB | 文件类型: ZIP
深度学习基础入门资源,基于keras和tensorflow的入门级代码

文件下载

资源详情

[{"title":"( 29 个子文件 1.7MB ) 基于keras和tensorflow的入门级代码","children":[{"title":"Keras_Imdb_RNN.ipynb <span style='color:#111;'> 73.26KB </span>","children":null,"spread":false},{"title":"Keras_Imdb_Introduce.ipynb <span style='color:#111;'> 1.63MB </span>","children":null,"spread":false},{"title":"Tensorflow_Mnist_MLP_h1000-h1000.ipynb <span style='color:#111;'> 47.12KB </span>","children":null,"spread":false},{"title":"MNIST_data","children":null,"spread":false},{"title":"Keras_Mnist_MLP_h1000_DropOut.ipynb <span style='color:#111;'> 75.89KB </span>","children":null,"spread":false},{"title":"Keras_Mnist_CNN.ipynb <span style='color:#111;'> 68.60KB </span>","children":null,"spread":false},{"title":"Tensorflow_activation_function.ipynb <span style='color:#111;'> 78.10KB </span>","children":null,"spread":false},{"title":"Keras_Taianic_MLP.ipynb <span style='color:#111;'> 66.18KB </span>","children":null,"spread":false},{"title":"Keras_Mnist_MLP_h1000_DropOut_h1000_DropOut.ipynb <span style='color:#111;'> 75.57KB </span>","children":null,"spread":false},{"title":"Tensorflow_Mnist_Introduce.ipynb <span style='color:#111;'> 84.43KB </span>","children":null,"spread":false},{"title":"Test_GPU.ipynb <span style='color:#111;'> 23.64KB </span>","children":null,"spread":false},{"title":"Keras_Mnist_Introduce.ipynb <span style='color:#111;'> 56.54KB </span>","children":null,"spread":false},{"title":"Tensorflow_Mnist_MLP_h1000.ipynb <span style='color:#111;'> 45.30KB </span>","children":null,"spread":false},{"title":"log","children":[{"title":"area","children":null,"spread":false},{"title":"CNN","children":null,"spread":false}],"spread":true},{"title":"Keras_Cifar_CNN_Deeper_Conv3.ipynb <span style='color:#111;'> 175.87KB </span>","children":null,"spread":false},{"title":"Keras_Imdb_LSTM.ipynb <span style='color:#111;'> 78.40KB </span>","children":null,"spread":false},{"title":"Keras_Imdb_MLP.ipynb <span style='color:#111;'> 69.96KB </span>","children":null,"spread":false},{"title":"SaveModel","children":null,"spread":false},{"title":"TensorFlow_Board_area.ipynb <span style='color:#111;'> 1.32KB </span>","children":null,"spread":false},{"title":"Keras_Mnist_MLP_h256.ipynb <span style='color:#111;'> 78.07KB </span>","children":null,"spread":false},{"title":"Keras_Cifar_CNN.ipynb <span style='color:#111;'> 145.42KB </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"Tensorflow_Mnist_CNN-checkpoint.ipynb <span style='color:#111;'> 73.73KB </span>","children":null,"spread":false},{"title":"Test_GPU-checkpoint.ipynb <span style='color:#111;'> 23.64KB </span>","children":null,"spread":false}],"spread":false},{"title":"Keras_Imdb_MLP_Large.ipynb <span style='color:#111;'> 68.35KB </span>","children":null,"spread":false},{"title":"Tensorflow_Mnist_CNN.ipynb <span style='color:#111;'> 73.81KB </span>","children":null,"spread":false},{"title":"Keras_Cifar_CNN-Introduce.ipynb <span style='color:#111;'> 72.40KB </span>","children":null,"spread":false},{"title":"TensorFlow_Basic.ipynb <span style='color:#111;'> 10.68KB </span>","children":null,"spread":false},{"title":"TensorFlow_Tensor_neural.ipynb <span style='color:#111;'> 19.16KB </span>","children":null,"spread":false},{"title":"Tensorflow_Mnist_MLP_h256.ipynb <span style='color:#111;'> 46.69KB </span>","children":null,"spread":false},{"title":"Keras_Mnist_MLP_h1000.ipynb <span style='color:#111;'> 76.49KB </span>","children":null,"spread":false},{"title":"Keras_Cifar_CNN_Continue_Train.ipynb <span style='color:#111;'> 123.79KB </span>","children":null,"spread":false},{"title":"data","children":null,"spread":false},{"title":"Keras_Taianic_Introduce.ipynb <span style='color:#111;'> 20.79KB </span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明