基于深度学习的农作物病虫害识别方法

上传者: kamo54 | 上传时间: 2021-02-22 21:11:44 | 文件大小: 371KB | 文件类型: PDF
传统的农作物病虫害识别方法具有鲁棒性差、识别准确率低等问题,而卷积神经网络具有自动提取图像特征、泛化能力强、识别准确率高等特点。快速准确地识别出农作物病虫害类型不仅可以减少病害给农民带来的损失,还可以降低农药对生态环境带来的影响。因此找到一种简单易行的检测方法来快速检测农作物病虫害类型很有意义。基于此,笔者在实验中采用了一种基于残差网络改进的卷积神经网络,并以公开的植物数据集影像作为实验的数据集来训练神经网络,且引入了Xception、VGG-16网络模型进行比较,实验结果证明:笔者所提出的神经网络模型识别准确率达到了98.6%,高于xception的93%、VGG-16的95%。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明