【GNN综述_2020_7】Heterogeneous Network Representation Learning

上传者: jyvycv | 上传时间: 2021-08-30 19:11:13 | 文件大小: 523KB | 文件类型: PDF
表征学习为各种人工智能领域提供了一种革命性的学习范式。在本次调查中,我们研究和回顾了表征学习的问题,重点是由不同类型的顶点和关系组成的异构网络。这个问题的目标是自动将输入异构网络中的对象(最常见的是顶点)投影到潜在的嵌入空间中,这样网络的结构和关系属性都可以被编码和保留。然后可以将嵌入(表示)用作机器学习算法的特征,以解决相应的网络任务。为了学习表达性嵌入,当前的研究进展可以分为两大类:浅层嵌入学习和图神经网络。在对现有文献进行彻底审查后,我们确定了几个尚未解决的关键挑战,并讨论了未来的方向。最后,我们构建了异构图基准以促进对这个快速发展的主题的开放研究。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明