[{"title":"( 30 个子文件 152KB ) SVM增量式学习的自适应与优化的MATLAB代码","children":[{"title":"Incremental-SVM-Learning-in-MATLAB-master","children":[{"title":"svmtrain2.m <span style='color:#111;'> 9.88KB </span>","children":null,"spread":false},{"title":"looest.m <span style='color:#111;'> 3.69KB </span>","children":null,"spread":false},{"title":"gpl.txt <span style='color:#111;'> 11.83KB </span>","children":null,"spread":false},{"title":"gestloo.m <span style='color:#111;'> 1.64KB </span>","children":null,"spread":false},{"title":"min_delta_p_c.m <span style='color:#111;'> 3.55KB </span>","children":null,"spread":false},{"title":"kernel.m <span style='color:#111;'> 835B </span>","children":null,"spread":false},{"title":"unlearn.m <span style='color:#111;'> 5.87KB </span>","children":null,"spread":false},{"title":"min_delta_p_s.m <span style='color:#111;'> 4.14KB </span>","children":null,"spread":false},{"title":"svmeval.m <span style='color:#111;'> 2.49KB </span>","children":null,"spread":false},{"title":"min_delta_acb.m <span style='color:#111;'> 4.38KB </span>","children":null,"spread":false},{"title":"SVM Incremental Learning Adaptation and Optimization - Diehl and Cauwenberghs - 2003.pdf <span style='color:#111;'> 130.28KB </span>","children":null,"spread":false},{"title":"perts.m <span style='color:#111;'> 268B </span>","children":null,"spread":false},{"title":"min_delta.m <span style='color:#111;'> 1.38KB </span>","children":null,"spread":false},{"title":"saveclass.m <span style='color:#111;'> 1.34KB </span>","children":null,"spread":false},{"title":"updateRQ.m <span style='color:#111;'> 2.09KB </span>","children":null,"spread":false},{"title":"bookkeeping.m <span style='color:#111;'> 1.75KB </span>","children":null,"spread":false},{"title":"move_indr.m <span style='color:#111;'> 1.41KB </span>","children":null,"spread":false},{"title":"nonlindata100.mat <span style='color:#111;'> 1.82KB </span>","children":null,"spread":false},{"title":"move_ind.m <span style='color:#111;'> 596B </span>","children":null,"spread":false},{"title":"kevals.m <span style='color:#111;'> 271B </span>","children":null,"spread":false},{"title":"kevalsreset.m <span style='color:#111;'> 216B </span>","children":null,"spread":false},{"title":"testresults.txt <span style='color:#111;'> 759B </span>","children":null,"spread":false},{"title":"README <span style='color:#111;'> 4.14KB </span>","children":null,"spread":false},{"title":"loadclass.m <span style='color:#111;'> 1.43KB </span>","children":null,"spread":false},{"title":"perturbc.m <span style='color:#111;'> 6.72KB </span>","children":null,"spread":false},{"title":"plot2dkm.m <span style='color:#111;'> 1.79KB </span>","children":null,"spread":false},{"title":"svmloo.m <span style='color:#111;'> 4.52KB </span>","children":null,"spread":false},{"title":"svmtrain.m <span style='color:#111;'> 7.33KB </span>","children":null,"spread":false},{"title":"learn.m <span style='color:#111;'> 4.73KB </span>","children":null,"spread":false},{"title":"perturbk.m <span style='color:#111;'> 7.55KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]