上传者: jyvycv
|
上传时间: 2021-08-30 14:15:43
|
文件大小: 1.74MB
|
文件类型: PDF
许多学习任务需要处理包含丰富元素之间关系信息的图形数据。物理系统建模、学习分子指纹、预测蛋白质界面和疾病分类需要一个模型来从图形输入中学习。在其他领域,例如从文本和图像等非结构数据中学习,对提取的结构(如句子的依赖树和图像的场景图)进行推理是一个重要的研究课题,也需要图推理模型。图神经网络 (GNN) 是神经模型,它通过图节点之间的消息传递来捕获图的依赖性。近年来,图卷积网络 (GCN)、图注意力网络 (GAT)、图循环网络 (GRN) 等 GNN 的变体在许多深度学习任务上都表现出了突破性的表现。在本次调查中,我们为 GNN 模型提出了一个通用的设计流程,并讨论了每个组件的变体,系统地对应用程序进行了分类,并为未来的研究提出了四个开放性问题。