计算机常用数值计算算法与程序 c++版

上传者: jongsuny | 上传时间: 2026-01-06 17:08:13 | 文件大小: 211KB | 文件类型: RAR

本光盘是《计算机常用数值计算算法与程序 C++版》一书的配套光盘,盘中包括了书中所有的C++程序源代码文件,每个源程序文件的文件扩展名都使用.cpp形式。这些C++程序已经在微软公司Windows平台下的Virsual C++ 6.0环境下通过。盘中还包括由这些源程序在VC++6.0下生成的可执行文件(文件扩展名为.exe),以及由这些程序运行后产生的结果文件(文件扩展名为.dat)。另外,还包括若干类书中所介绍算法的头文件,由文件扩展名为.h和.inl所组成。

为了方便读者实际应用书中所介绍的算法程序,本光盘专门预创建了VC++6.0的工程,以每一章建立一个工程,一共有16个工程,对应着书中的16章。全部工程包含在一个目录(文件夹)——NumComp下,该目录下一共有17个子目录(文件夹),第一个到第十六个为每章所对应的工程文件夹,命名为ChapXX,XX表示01至16,如Chap05,表示为第五章的程序所建立了工程目录(文件夹),第17个目录(文件夹)名为include,其中存放了本书中算法程序需要的诸头文件。在前十六个目录(文件夹)中除存放了各章所介绍的算法示例C++源程序文件,还包括几个VC++6.0工程所需要的文件,读者可以不用去动它们。在每一个ChapXX目录(文件夹)下,还有一个目录(文件夹):debug,该目录(文件夹)中存放了ChapXX所对应的章中所有算法C++源程序生成的可执行文件和这些程序运行后生成的结果数据文件。除止之外,还有几个是VC++6.0工程所生成的文件,读者可以不用去动它们。

在每一个ChapXX目录(文件夹)下,包括一个这样的文件:ChapX.dsw,X表示1至16这16个阿拉伯数字之一,对应于这X章的工程。当进入到某一这样的目录(文件夹)中,用鼠标双击该文件名,就可以启动VC++6.0程序,并调用了该工程,这是最方便的一种启动VC++6.0的方法之一,下面就可以进行对C++程序的编辑、编译、连接、运行等工作了。具体的操作步骤,可以参阅有关VC++6.0的使用操作手册,或技术手册。

如果读者要自己另外建立VC++6.0的工程及相应的目录(文件夹),可以参阅VC++6.0的使用操作手册,也可阅读《计算机常用数值计算算法与程序 C++版》一书的第一章“概论”中的1.8节“Visual C++ 6.0的编译运行环境”,其中有详细说明。

最后注意,在VC++ 6.0中设置好路径,特别是include目录(文件夹)的路径,否则在编译时会出现找不到头文件的错误,使编译无法正常进行。具体的设置方法请参看本书第1章的相关内容。

文件下载

资源详情

[{"title":"( 193 个子文件 211KB ) 计算机常用数值计算算法与程序 c++版","children":[{"title":"MatrixExample.cpp <span style='color:#111;'> 3.76KB </span>","children":null,"spread":false},{"title":"StepwiseRegression.cpp <span style='color:#111;'> 2.75KB </span>","children":null,"spread":false},{"title":"PolyValueTwoDim.cpp <span style='color:#111;'> 2.66KB </span>","children":null,"spread":false},{"title":"ComplexExample.cpp <span style='color:#111;'> 2.37KB </span>","children":null,"spread":false},{"title":"MatrixInversionGS.cpp <span style='color:#111;'> 2.31KB </span>","children":null,"spread":false},{"title":"PolyValueOneDim.cpp <span style='color:#111;'> 2.15KB </span>","children":null,"spread":false},{"title":"SievingKalman.cpp <span style='color:#111;'> 2.01KB </span>","children":null,"spread":false},{"title":"Comm.cpp <span style='color:#111;'> 1.98KB </span>","children":null,"spread":false},{"title":"LE_TotalChoiceGaussJordan.cpp <span style='color:#111;'> 1.88KB </span>","children":null,"spread":false},{"title":"ExtremumBrentNonDerivative1D.CPP <span style='color:#111;'> 1.86KB </span>","children":null,"spread":false},{"title":"MatrixSymmetryRegular.cpp <span style='color:#111;'> 1.84KB </span>","children":null,"spread":false},{"title":"ExtremumGold1D.CPP <span style='color:#111;'> 1.77KB </span>","children":null,"spread":false},{"title":"MatrixLU.cpp <span style='color:#111;'> 1.74KB </span>","children":null,"spread":false},{"title":"PolyMultip.cpp <span style='color:#111;'> 1.70KB </span>","children":null,"spread":false},{"title":"PolyDiv.cpp <span style='color:#111;'> 1.70KB </span>","children":null,"spread":false},{"title":"LE_TotalChoiceGauss.cpp <span style='color:#111;'> 1.69KB </span>","children":null,"spread":false},{"title":"ODE_Gear.cpp <span style='color:#111;'> 1.69KB </span>","children":null,"spread":false},{"title":"MatrixSymmetryRegularCholesky.cpp <span style='color:#111;'> 1.56KB </span>","children":null,"spread":false},{"title":"FourierTransform.cpp <span style='color:#111;'> 1.48KB </span>","children":null,"spread":false},{"title":"MatrixSingularValue.cpp <span style='color:#111;'> 1.41KB </span>","children":null,"spread":false},{"title":"Interpolation3Spooling1stBoundary.cpp <span style='color:#111;'> 1.39KB </span>","children":null,"spread":false},{"title":"Interpolation3Spooling2ndBoundary.cpp <span style='color:#111;'> 1.38KB </span>","children":null,"spread":false},{"title":"RootGradient.cpp <span style='color:#111;'> 1.35KB </span>","children":null,"spread":false},{"title":"StatRandomSample.cpp <span style='color:#111;'> 1.35KB </span>","children":null,"spread":false},{"title":"ExtremumComplexND.cpp <span style='color:#111;'> 1.31KB </span>","children":null,"spread":false},{"title":"RootMonteCarloComplex.cpp <span style='color:#111;'> 1.29KB </span>","children":null,"spread":false},{"title":"RootLeastSquareGeneralizedInverse2.cpp <span style='color:#111;'> 1.27KB </span>","children":null,"spread":false},{"title":"Interpolation3Spooling3thBoundary.cpp <span style='color:#111;'> 1.27KB </span>","children":null,"spread":false},{"title":"PolyValueOneDimGroup.cpp <span style='color:#111;'> 1.26KB </span>","children":null,"spread":false},{"title":"MatrixSymmetryRegularInversion.cpp <span style='color:#111;'> 1.26KB </span>","children":null,"spread":false},{"title":"RootLeastSquareGeneralizedInverse1.cpp <span style='color:#111;'> 1.23KB </span>","children":null,"spread":false},{"title":"SievingABR.cpp <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"MatrixRank.cpp <span style='color:#111;'> 1.16KB </span>","children":null,"spread":false},{"title":"MatrixToeplitzInversionTrench.cpp <span style='color:#111;'> 1.16KB </span>","children":null,"spread":false},{"title":"RootNewtonHillDown.cpp <span style='color:#111;'> 1.15KB </span>","children":null,"spread":false},{"title":"HouseholderTransform.cpp <span style='color:#111;'> 1.09KB </span>","children":null,"spread":false},{"title":"LinearRegressionND.cpp <span style='color:#111;'> 1.06KB </span>","children":null,"spread":false},{"title":"EigenvalueVectorRealTriangleQR.cpp <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"MatrixSymmetry.cpp <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"ODE_GillVariationalStep.cpp <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"ODE_Treanor.cpp <span style='color:#111;'> 1.03KB </span>","children":null,"spread":false},{"title":"InterpolationSmoothNotIsometry.cpp <span style='color:#111;'> 1.02KB </span>","children":null,"spread":false},{"title":"LE_StrapEquationGauss.cpp <span style='color:#111;'> 1.01KB </span>","children":null,"spread":false},{"title":"MatrixDeterminant.cpp <span style='color:#111;'> 1015B </span>","children":null,"spread":false},{"title":"LE_SparseEuationTotalChoiceGaussJordan.cpp <span style='color:#111;'> 1002B </span>","children":null,"spread":false},{"title":"IntegralGaussMD.cpp <span style='color:#111;'> 998B </span>","children":null,"spread":false},{"title":"LE_LinearLeastSquareGeneralizedInverse.cpp <span style='color:#111;'> 989B </span>","children":null,"spread":false},{"title":"EigenvalueVectorHessenbergQR.cpp <span style='color:#111;'> 989B </span>","children":null,"spread":false},{"title":"ODE_TreanorInterval.cpp <span style='color:#111;'> 986B </span>","children":null,"spread":false},{"title":"ODE_MersonVariationalStep.cpp <span style='color:#111;'> 946B </span>","children":null,"spread":false},{"title":"ODE_GillVariationalStepInterval.cpp <span style='color:#111;'> 945B </span>","children":null,"spread":false},{"title":"RootQuasiNewton.cpp <span style='color:#111;'> 943B </span>","children":null,"spread":false},{"title":"RootHalves.cpp <span style='color:#111;'> 934B </span>","children":null,"spread":false},{"title":"ODE_AdamsInterval.cpp <span style='color:#111;'> 932B </span>","children":null,"spread":false},{"title":"EigenvalueVectorRealSymmetryJacobi.cpp <span style='color:#111;'> 930B </span>","children":null,"spread":false},{"title":"HalfLogarithmCorrelation.cpp <span style='color:#111;'> 928B </span>","children":null,"spread":false},{"title":"ODE_RungeKuttaContentStep.cpp <span style='color:#111;'> 928B </span>","children":null,"spread":false},{"title":"LinearRegression1D.cpp <span style='color:#111;'> 926B </span>","children":null,"spread":false},{"title":"LE_SymmetryRegularEuationSquareRoot.cpp <span style='color:#111;'> 925B </span>","children":null,"spread":false},{"title":"EigenvalueVectorRealSymmetryJacobiB.cpp <span style='color:#111;'> 923B </span>","children":null,"spread":false},{"title":"ODE_HammingInterval.cpp <span style='color:#111;'> 922B </span>","children":null,"spread":false},{"title":"LE_SymmetryEquation.cpp <span style='color:#111;'> 920B </span>","children":null,"spread":false},{"title":"ExtremumFractionND.cpp <span style='color:#111;'> 918B </span>","children":null,"spread":false},{"title":"ODE_RungeKuttaVariationalStep.cpp <span style='color:#111;'> 913B </span>","children":null,"spread":false},{"title":"ODE_BothSidesInterval.cpp <span style='color:#111;'> 907B </span>","children":null,"spread":false},{"title":"ExtremumSimplexND.cpp <span style='color:#111;'> 906B </span>","children":null,"spread":false},{"title":"ODE_WittyContentStep.cpp <span style='color:#111;'> 906B </span>","children":null,"spread":false},{"title":"ODE_FractionInterval.cpp <span style='color:#111;'> 901B </span>","children":null,"spread":false},{"title":"ODE_EulerVariationalStep.cpp <span style='color:#111;'> 901B </span>","children":null,"spread":false},{"title":"InterpolationSmoothIsometry.cpp <span style='color:#111;'> 889B </span>","children":null,"spread":false},{"title":"GeneralizedInversionSingularValue.cpp <span style='color:#111;'> 873B </span>","children":null,"spread":false},{"title":"ODE_Fraction.cpp <span style='color:#111;'> 872B </span>","children":null,"spread":false},{"title":"RootMonteCarloGroupReal.cpp <span style='color:#111;'> 863B </span>","children":null,"spread":false},{"title":"Interpolation1Variable3PointsIsometry.cpp <span style='color:#111;'> 845B </span>","children":null,"spread":false},{"title":"LE_LinearLeastSquareHouseholder.cpp <span style='color:#111;'> 836B </span>","children":null,"spread":false},{"title":"RootNewton.cpp <span style='color:#111;'> 828B </span>","children":null,"spread":false},{"title":"InterpolationFractionNotIsometry.cpp <span style='color:#111;'> 826B </span>","children":null,"spread":false},{"title":"LogarithmCorrelation.cpp <span style='color:#111;'> 823B </span>","children":null,"spread":false},{"title":"Interpolation2VariableWholeInterval.cpp <span style='color:#111;'> 817B </span>","children":null,"spread":false},{"title":"MatrixQR.cpp <span style='color:#111;'> 811B </span>","children":null,"spread":false},{"title":"ODE_EulerContentStep.cpp <span style='color:#111;'> 808B </span>","children":null,"spread":false},{"title":"Interpolation2Variable3Points.cpp <span style='color:#111;'> 806B </span>","children":null,"spread":false},{"title":"InterpolationAitkenNotIsometry.cpp <span style='color:#111;'> 804B </span>","children":null,"spread":false},{"title":"FitSurfaceLeastSquares.cpp <span style='color:#111;'> 797B </span>","children":null,"spread":false},{"title":"Interpolation1VariableIsometry.cpp <span style='color:#111;'> 794B </span>","children":null,"spread":false},{"title":"HessenbergTransform.cpp <span style='color:#111;'> 792B </span>","children":null,"spread":false},{"title":"MatrixTranspose.cpp <span style='color:#111;'> 786B </span>","children":null,"spread":false},{"title":"ODE_LinearBoundaryValude.cpp <span style='color:#111;'> 778B </span>","children":null,"spread":false},{"title":"LE_IllConditionedEquation.cpp <span style='color:#111;'> 773B </span>","children":null,"spread":false},{"title":"LE_GaussSeidelIteration.cpp <span style='color:#111;'> 770B </span>","children":null,"spread":false},{"title":"InterpolationHermiteNotIsometry.cpp <span style='color:#111;'> 753B </span>","children":null,"spread":false},{"title":"Interpolation1Variable3PointsNotIsometry.cpp <span style='color:#111;'> 735B </span>","children":null,"spread":false},{"title":"LE_SymmetryRegularEuationConjugateGradient.cpp <span style='color:#111;'> 733B </span>","children":null,"spread":false},{"title":"IntegralSimpson2D.cpp <span style='color:#111;'> 729B </span>","children":null,"spread":false},{"title":"RootFraction.cpp <span style='color:#111;'> 719B </span>","children":null,"spread":false},{"title":"RootAitken.cpp <span style='color:#111;'> 714B </span>","children":null,"spread":false},{"title":"IntegralFraction2D.cpp <span style='color:#111;'> 710B </span>","children":null,"spread":false},{"title":"InterpolationAitkenIsometry.cpp <span style='color:#111;'> 704B </span>","children":null,"spread":false},{"title":"ExtremumFraction1D.cpp <span style='color:#111;'> 686B </span>","children":null,"spread":false},{"title":"FourierSeriesApproach.cpp <span style='color:#111;'> 686B </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明