高级GGB资源,非常好的学习资料

上传者: jhmgmj | 上传时间: 2025-06-11 10:40:22 | 文件大小: 18.42MB | 文件类型: 7Z
高级GGB资源,非常好的学习资料 GGB,全称GeoGebra,是一种动态数学软件,集几何、代数、微积分等多学科于一体,被广泛应用于教育领域,尤其是数学和科学的教学。GeoGebra软件由Markus Hohenwarter创建,旨在通过直观、互动的计算工具,帮助学生更好地理解抽象的数学概念。它不仅可以用于课堂教学、作业设计、模拟实验,也可以作为学生自学和教师备课的重要辅助工具。 GeoGebra软件的核心功能包括几何绘图、作图功能、方程式求解、函数图表绘制、动态统计图表和编程六大部分。几何绘图方面,用户可以进行点、线、圆、多边形等基本几何图形的绘制,并利用鼠标或输入指令进行移动、旋转、缩放等变换,直观展示几何图形的动态变化过程。作图功能则允许用户通过输入指令快速绘制复杂的几何图形,同时也可以探索图形的性质和定理。方程式求解和函数图表绘制功能让数学问题的解决过程变得更加直观,用户可以即时看到方程式或函数图像的变化,以及这些变化对问题解答的影响。动态统计图表功能则提供了数据收集、分析和可视化的强大工具。编程功能则是GeoGebra的高级功能,它允许用户通过编程进行更复杂的数学模型构建和算法开发。 由于GeoGebra的这些功能特性,它特别适合用于教学演示,帮助学生直观地理解抽象数学概念。例如,在教授几何课程时,教师可以利用GeoGebra软件动态展示几何图形的性质和变化过程,加深学生对几何图形的理解。在代数课程中,通过函数的动态演示,学生可以更直观地观察到函数图像随参数变化的情况,从而深刻理解函数的性质。在微积分的教学中,GeoGebra可以用来演示导数和积分的概念,通过动态图形帮助学生掌握微积分的基本原理。 此外,GeoGebra还支持网络社区功能,用户可以分享自己的作品或下载他人的作品,从而实现资源的共享与交流。这种开放性极大地丰富了GeoGebra的教学资源库,为全球的教师和学生提供了丰富的学习材料。因此,无论是在课堂教学、在线教学还是自学中,GeoGebra都是一款不可或缺的教学工具。 高级GGB资源,非常好的学习资料,指的是那些高质量的GeoGebra教学资源,这些资源往往由经验丰富的教师或数学爱好者所创建,它们能够更加深入地展示GeoGebra软件在数学教学中的强大功能。这些资源可能包括复杂几何问题的解决、深入代数概念的教学、微积分知识点的可视化教学以及统计学图表的动态展示等。这些高级资源对于提升数学教学效果、激发学生学习兴趣以及培养学生的问题解决能力等方面都有显著的促进作用。 对于教师而言,高级GGB资源是一笔宝贵的财富,可以节省备课时间,提升教学效果,使课堂更加生动有趣。对于学生而言,这些资源可以作为辅助学习材料,帮助他们更好地理解抽象概念,提高学习效率。因此,无论是教师还是学生,都应该充分利用这些高级GGB资源,提升数学学习和教学的质量。

文件下载

资源详情

[{"title":"( 740 个子文件 18.42MB ) 高级GGB资源,非常好的学习资料","children":[{"title":"抛掷两枚硬币的频率统计,完美版02.ggb <span style='color:#111;'> 319.45KB </span>","children":null,"spread":false},{"title":"抛掷两枚硬币的频率统计,完美版.ggb <span style='color:#111;'> 317.20KB </span>","children":null,"spread":false},{"title":"抛掷硬币试验,完美版.ggb <span style='color:#111;'> 312.91KB </span>","children":null,"spread":false},{"title":"二项分布,北师大版选修一P208,多人抛掷硬币试验.ggb <span style='color:#111;'> 306.03KB </span>","children":null,"spread":false},{"title":"增函数与减函数.ggb <span style='color:#111;'> 187.23KB </span>","children":null,"spread":false},{"title":"P43,垛积术.ggb <span style='color:#111;'> 131.61KB </span>","children":null,"spread":false},{"title":"dandelion双球:椭圆与双曲线的解析.ggb <span style='color:#111;'> 119.80KB </span>","children":null,"spread":false},{"title":"10红球20蓝球,有放回摸n次,摸到红球的频率.ggb <span style='color:#111;'> 117.17KB </span>","children":null,"spread":false},{"title":"抛物线探究,直尺三角板,完美动画版.ggb <span style='color:#111;'> 115.83KB </span>","children":null,"spread":false},{"title":"抛掷骰子试验,完美版.ggb <span style='color:#111;'> 110.49KB </span>","children":null,"spread":false},{"title":"圆柱圆锥圆台,棱柱棱锥棱台,外接球统一版.ggb <span style='color:#111;'> 108.90KB </span>","children":null,"spread":false},{"title":"抛掷两枚骰子的点数和.ggb <span style='color:#111;'> 108.03KB </span>","children":null,"spread":false},{"title":"双曲线的形成,拉链版.ggb <span style='color:#111;'> 98.94KB </span>","children":null,"spread":false},{"title":"布丰投针.ggb <span style='color:#111;'> 98.84KB </span>","children":null,"spread":false},{"title":"第一定义画椭圆.ggb <span style='color:#111;'> 96.97KB </span>","children":null,"spread":false},{"title":"双曲线第一定义的说明.ggb <span style='color:#111;'> 95.09KB </span>","children":null,"spread":false},{"title":"椭圆第一定义的说明,完美版.ggb <span style='color:#111;'> 91.38KB </span>","children":null,"spread":false},{"title":"0-9编号,有放回摸球.ggb <span style='color:#111;'> 90.34KB </span>","children":null,"spread":false},{"title":"随机试验的规律性.ggb <span style='color:#111;'> 87.56KB </span>","children":null,"spread":false},{"title":"P53复习巩固第9题,是否受台风影响的动画演示.ggb <span style='color:#111;'> 85.42KB </span>","children":null,"spread":false},{"title":"正四面体外接球,动态作图.ggb <span style='color:#111;'> 82.46KB </span>","children":null,"spread":false},{"title":"十字歇山的拆分.ggb <span style='color:#111;'> 82.41KB </span>","children":null,"spread":false},{"title":"简单随机抽样与分层抽样的对比,完美版.ggb <span style='color:#111;'> 81.41KB </span>","children":null,"spread":false},{"title":"运动的叠加,李萨如图形.ggb <span style='color:#111;'> 78.17KB </span>","children":null,"spread":false},{"title":"球体积转换为锥体积.ggb <span style='color:#111;'> 74.77KB </span>","children":null,"spread":false},{"title":"用样本估计总体.ggb <span style='color:#111;'> 72.49KB </span>","children":null,"spread":false},{"title":"正方体与球面的动态交线.ggb <span style='color:#111;'> 72.47KB </span>","children":null,"spread":false},{"title":"四面体与球面的动态交线.ggb <span style='color:#111;'> 72.28KB </span>","children":null,"spread":false},{"title":"正方体中的正四面体.ggb <span style='color:#111;'> 69.77KB </span>","children":null,"spread":false},{"title":"P105复习巩固第3题配图.ggb <span style='color:#111;'> 69.26KB </span>","children":null,"spread":false},{"title":"动态小蛮腰.ggb <span style='color:#111;'> 68.47KB </span>","children":null,"spread":false},{"title":"牟合方盖分八瓣.ggb <span style='color:#111;'> 68.34KB </span>","children":null,"spread":false},{"title":"正棱锥的内切球和外接球.ggb <span style='color:#111;'> 66.33KB </span>","children":null,"spread":false},{"title":"P104练习第3题.ggb <span style='color:#111;'> 64.28KB </span>","children":null,"spread":false},{"title":"球在平面上的斜投影是椭圆04:dandelion双球法.ggb <span style='color:#111;'> 64.01KB </span>","children":null,"spread":false},{"title":"有放回多次摸球模板(条形图版).ggb <span style='color:#111;'> 63.66KB </span>","children":null,"spread":false},{"title":"棱柱棱锥体积关系,棱柱棱锥棱台的等体积变化.ggb <span style='color:#111;'> 62.90KB </span>","children":null,"spread":false},{"title":"球在平面上的斜投影是椭圆03:第二定义法.ggb <span style='color:#111;'> 61.95KB </span>","children":null,"spread":false},{"title":"同心圆绘制椭圆.ggb <span style='color:#111;'> 61.33KB </span>","children":null,"spread":false},{"title":"三棱柱分割成三棱锥.ggb <span style='color:#111;'> 61.29KB </span>","children":null,"spread":false},{"title":"同心圆绘制双曲线.ggb <span style='color:#111;'> 61.24KB </span>","children":null,"spread":false},{"title":"有放回多次摸球模板(频率折线版).ggb <span style='color:#111;'> 61.08KB </span>","children":null,"spread":false},{"title":"dandelion球:抛物线的解析.ggb <span style='color:#111;'> 60.84KB </span>","children":null,"spread":false},{"title":"祖暅原理(锥体版).ggb <span style='color:#111;'> 60.66KB </span>","children":null,"spread":false},{"title":"P26拓广探索第12题:三角垛.ggb <span style='color:#111;'> 59.40KB </span>","children":null,"spread":false},{"title":"圆锥曲线的得名,简易版.ggb <span style='color:#111;'> 58.34KB </span>","children":null,"spread":false},{"title":"dandelion双球,圆柱版.ggb <span style='color:#111;'> 58.10KB </span>","children":null,"spread":false},{"title":"外接球,长方体.ggb <span style='color:#111;'> 57.76KB </span>","children":null,"spread":false},{"title":"拟柱体的定义,体积推导,苏教版P209.ggb <span style='color:#111;'> 57.54KB </span>","children":null,"spread":false},{"title":"平面截牟合方盖与球体.ggb <span style='color:#111;'> 57.36KB </span>","children":null,"spread":false},{"title":"平行六面体内,体会空间向量加法的交换律和结合律02.ggb <span style='color:#111;'> 56.61KB </span>","children":null,"spread":false},{"title":"不放回摸球,5种编号小球,多少次可以摸全.ggb <span style='color:#111;'> 56.25KB </span>","children":null,"spread":false},{"title":"祖暅原理(球体截面版).ggb <span style='color:#111;'> 55.69KB </span>","children":null,"spread":false},{"title":"圆翻折形成椭圆和双曲线,动态版.ggb <span style='color:#111;'> 55.53KB </span>","children":null,"spread":false},{"title":"平行六面体内,体会空间向量加法的交换律和结合律01.ggb <span style='color:#111;'> 54.79KB </span>","children":null,"spread":false},{"title":"由线线平行,得线面平行.ggb <span style='color:#111;'> 54.68KB </span>","children":null,"spread":false},{"title":"频率的稳定性,摸球试验,P255.ggb <span style='color:#111;'> 54.07KB </span>","children":null,"spread":false},{"title":"三棱台的分割.ggb <span style='color:#111;'> 53.05KB </span>","children":null,"spread":false},{"title":"P116练习第3题,阿基米德多面体.ggb <span style='color:#111;'> 52.71KB </span>","children":null,"spread":false},{"title":"正方体截面探究,切割分离版.ggb <span style='color:#111;'> 52.37KB </span>","children":null,"spread":false},{"title":"dandelion双球,圆锥版.ggb <span style='color:#111;'> 52.36KB </span>","children":null,"spread":false},{"title":"堑堵阳马鱉臑.ggb <span style='color:#111;'> 52.11KB </span>","children":null,"spread":false},{"title":"球的表面积的动态演示(曲面版).ggb <span style='color:#111;'> 51.80KB </span>","children":null,"spread":false},{"title":"基本事实4,平行性的传递性,P134例1.ggb <span style='color:#111;'> 51.29KB </span>","children":null,"spread":false},{"title":"堑堵背景下的,异面直线所成的角.ggb <span style='color:#111;'> 51.20KB </span>","children":null,"spread":false},{"title":"空间向量基本定理(任意基向量,三滑动条版).ggb <span style='color:#111;'> 50.98KB </span>","children":null,"spread":false},{"title":"外接球,二面角型.ggb <span style='color:#111;'> 50.44KB </span>","children":null,"spread":false},{"title":"球在平面上的斜投影是椭圆02:第一定义法.ggb <span style='color:#111;'> 50.29KB </span>","children":null,"spread":false},{"title":"一元线性回归模型参数的最小二乘估计,P108父子身高版.ggb <span style='color:#111;'> 49.94KB </span>","children":null,"spread":false},{"title":"圆锥曲线的得名,完美版.ggb <span style='color:#111;'> 49.94KB </span>","children":null,"spread":false},{"title":"圆锥的内切球.ggb <span style='color:#111;'> 49.87KB </span>","children":null,"spread":false},{"title":"三个黄金矩形,两两垂直交叉拼接.ggb <span style='color:#111;'> 49.41KB </span>","children":null,"spread":false},{"title":"过直线上一点,有无数条直线与这条直线垂直.ggb <span style='color:#111;'> 49.20KB </span>","children":null,"spread":false},{"title":"抛物面的光反射.ggb <span style='color:#111;'> 48.83KB </span>","children":null,"spread":false},{"title":"蚂蚁爬圆柱半周或一周的最短路径.ggb <span style='color:#111;'> 47.58KB </span>","children":null,"spread":false},{"title":"半球+圆锥=圆柱,注水版.ggb <span style='color:#111;'> 47.44KB </span>","children":null,"spread":false},{"title":"球与圆锥的体积关系.ggb <span style='color:#111;'> 46.90KB </span>","children":null,"spread":false},{"title":"祖暅原理球体积(长方体里挖去四棱锥).ggb <span style='color:#111;'> 46.76KB </span>","children":null,"spread":false},{"title":"线面垂直的判定,02.ggb <span style='color:#111;'> 46.40KB </span>","children":null,"spread":false},{"title":"球的表面积与体积.ggb <span style='color:#111;'> 45.96KB </span>","children":null,"spread":false},{"title":"祖暅原理,球和正四棱锥.ggb <span style='color:#111;'> 45.56KB </span>","children":null,"spread":false},{"title":"正方体,内切球,平面,截面圆面积.ggb <span style='color:#111;'> 45.50KB </span>","children":null,"spread":false},{"title":"推论2,利用桌子的四条腿形象说明,P127.ggb <span style='color:#111;'> 45.37KB </span>","children":null,"spread":false},{"title":"平行投影的动态说明.ggb <span style='color:#111;'> 44.90KB </span>","children":null,"spread":false},{"title":"祖暅原理(任意台体完美版).ggb <span style='color:#111;'> 44.84KB </span>","children":null,"spread":false},{"title":"多面体与旋转体.ggb <span style='color:#111;'> 44.82KB </span>","children":null,"spread":false},{"title":"鳖臑背景下的,异面直线所成的角.ggb <span style='color:#111;'> 44.72KB </span>","children":null,"spread":false},{"title":"P170综合运用第10题.ggb <span style='color:#111;'> 44.57KB </span>","children":null,"spread":false},{"title":"蚂蚁爬圆锥最短路线.ggb <span style='color:#111;'> 44.34KB </span>","children":null,"spread":false},{"title":"牟合方盖体积的推导.ggb <span style='color:#111;'> 43.60KB </span>","children":null,"spread":false},{"title":"半球+圆锥=圆柱.ggb <span style='color:#111;'> 43.48KB </span>","children":null,"spread":false},{"title":"阳马背景下的,异面直线所成的角.ggb <span style='color:#111;'> 43.28KB </span>","children":null,"spread":false},{"title":"外接球,垂面型.ggb <span style='color:#111;'> 43.15KB </span>","children":null,"spread":false},{"title":"指数函数的性质总结,完美版.ggb <span style='color:#111;'> 42.92KB </span>","children":null,"spread":false},{"title":"空间两向量平移到同一平面.ggb <span style='color:#111;'> 42.83KB </span>","children":null,"spread":false},{"title":"棱柱锥台无限逼近圆柱锥台.ggb <span style='color:#111;'> 42.70KB </span>","children":null,"spread":false},{"title":"一元线性回归模型,儿子与父亲身高.ggb <span style='color:#111;'> 42.62KB </span>","children":null,"spread":false},{"title":"祖暅原理(锥体老版).ggb <span style='color:#111;'> 42.60KB </span>","children":null,"spread":false},{"title":"P30例3,线面平行,向量法和几何法.ggb <span style='color:#111;'> 42.42KB </span>","children":null,"spread":false},{"title":"圆柱、圆锥、圆台的动态形成(序列版).ggb <span style='color:#111;'> 42.21KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明