研究生课程数值分析课件

上传者: heureuxnow | 上传时间: 2022-05-22 16:08:41 | 文件大小: 8.03MB | 文件类型: RAR
数值分析详细课件附带MATLAB数值算法实现,ch1绪论、ch2插值、ch3拟合、ch4数值微积分、ch5线性方程组直接法、ch6线性方程组迭代法、ch7方程求根、ch8常微数值解,ch9-ch10MATLAB

文件下载

资源详情

[{"title":"( 29 个子文件 8.03MB ) 研究生课程数值分析课件","children":[{"title":"课件","children":[{"title":"chapt2插值","children":[{"title":"2.6样条函数及三次样条插值.ppt <span style='color:#111;'> 570.50KB </span>","children":null,"spread":false},{"title":"2.5分段低次插值法.ppt <span style='color:#111;'> 703.50KB </span>","children":null,"spread":false},{"title":"2.4 Hermite插值法.ppt <span style='color:#111;'> 796.00KB </span>","children":null,"spread":false},{"title":"2.3Newton插值.ppt <span style='color:#111;'> 572.00KB </span>","children":null,"spread":false},{"title":"2.2 Lagrange 插值.ppt <span style='color:#111;'> 974.50KB </span>","children":null,"spread":false},{"title":"2.1 插值问题的提出.ppt <span style='color:#111;'> 336.50KB </span>","children":null,"spread":false}],"spread":true},{"title":"chapt5线性方程组直接法","children":[{"title":"5.3直接三角分解法.ppt <span style='color:#111;'> 840.00KB </span>","children":null,"spread":false},{"title":"5.6扰动误差分析.ppt <span style='color:#111;'> 820.50KB </span>","children":null,"spread":false},{"title":"5.4追赶法.ppt <span style='color:#111;'> 411.00KB </span>","children":null,"spread":false},{"title":"5.2(b) Gauss列主元消去法.ppt <span style='color:#111;'> 564.50KB </span>","children":null,"spread":false},{"title":"5.5平方根法.ppt <span style='color:#111;'> 356.50KB </span>","children":null,"spread":false},{"title":"5.2(a) Gauss消去法.ppt <span style='color:#111;'> 418.50KB </span>","children":null,"spread":false},{"title":"5.1Gauss消去法.ppt <span style='color:#111;'> 305.00KB </span>","children":null,"spread":false}],"spread":true},{"title":"chapt3拟合","children":[{"title":"3曲线拟合.ppt <span style='color:#111;'> 899.00KB </span>","children":null,"spread":false}],"spread":true},{"title":"MATLAB","children":[{"title":"Ch10.数值算法实现.ppt <span style='color:#111;'> 1.01MB </span>","children":null,"spread":false},{"title":"Ch9.Matlab基础知识.ppt <span style='color:#111;'> 2.56MB </span>","children":null,"spread":false}],"spread":true},{"title":"chapt8常微数值解","children":[{"title":"8.4-8.5.ppt <span style='color:#111;'> 544.50KB </span>","children":null,"spread":false},{"title":"8.1-8.2.ppt <span style='color:#111;'> 462.00KB </span>","children":null,"spread":false},{"title":"8.3Runge-Kutta方法.ppt <span style='color:#111;'> 308.00KB </span>","children":null,"spread":false}],"spread":true},{"title":"ch1绪论","children":[{"title":"num_01.ppt <span style='color:#111;'> 770.50KB </span>","children":null,"spread":false}],"spread":true},{"title":"chapt6 线性方程组迭代法","children":[{"title":"6.1-6.2线性方程组迭代解法.ppt <span style='color:#111;'> 250.00KB </span>","children":null,"spread":false},{"title":"6.4超松弛迭代法.ppt <span style='color:#111;'> 225.00KB </span>","children":null,"spread":false},{"title":"6.3迭代法的收敛定理.ppt <span style='color:#111;'> 352.50KB </span>","children":null,"spread":false}],"spread":true},{"title":"chapt7方程求根","children":[{"title":"7非线性方程求解.ppt <span style='color:#111;'> 1.01MB </span>","children":null,"spread":false}],"spread":true},{"title":"chapt4数值微积分","children":[{"title":"4.5Romberg算法(略去).ppt <span style='color:#111;'> 584.00KB </span>","children":null,"spread":false},{"title":"4.2复合求积法.ppt <span style='color:#111;'> 551.00KB </span>","children":null,"spread":false},{"title":"4.1-4.2Newton-Cotes求积公式.ppt <span style='color:#111;'> 843.50KB </span>","children":null,"spread":false},{"title":"4.3高斯型求积公式.ppt <span style='color:#111;'> 325.50KB </span>","children":null,"spread":false},{"title":"4.4 数值微分-new.ppt <span style='color:#111;'> 149.50KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明