[{"title":"( 28 个子文件 5.03MB ) python机器学习 聚类算法Kmeans代码实现 包含所用数据集和代码","children":[{"title":"data","children":[{"title":"world-happiness-report-2017.csv <span style='color:#111;'> 28.69KB </span>","children":null,"spread":false},{"title":"microchips-tests.csv <span style='color:#111;'> 2.20KB </span>","children":null,"spread":false},{"title":"fashion-mnist-demo.csv <span style='color:#111;'> 10.57MB </span>","children":null,"spread":false},{"title":"server-operational-params.csv <span style='color:#111;'> 11.36KB </span>","children":null,"spread":false},{"title":"non-linear-regression-x-y.csv <span style='color:#111;'> 4.41KB </span>","children":null,"spread":false},{"title":"mnist-demo.csv <span style='color:#111;'> 17.43MB </span>","children":null,"spread":false},{"title":"iris.csv <span style='color:#111;'> 3.77KB </span>","children":null,"spread":false}],"spread":true},{"title":"kmeans","children":[{"title":"k_means.py <span style='color:#111;'> 2.16KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"k_means.cpython-36.pyc <span style='color:#111;'> 1.80KB </span>","children":null,"spread":false}],"spread":true},{"title":"demo.py <span style='color:#111;'> 1.53KB </span>","children":null,"spread":false}],"spread":true},{"title":"utils","children":[{"title":"features","children":[{"title":"generate_sinusoids.py <span style='color:#111;'> 388B </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"normalize.cpython-36.pyc <span style='color:#111;'> 522B </span>","children":null,"spread":false},{"title":"prepare_for_training.cpython-36.pyc <span style='color:#111;'> 904B </span>","children":null,"spread":false},{"title":"generate_sinusoids.cpython-36.pyc <span style='color:#111;'> 531B </span>","children":null,"spread":false},{"title":"__init__.cpython-36.pyc <span style='color:#111;'> 355B </span>","children":null,"spread":false},{"title":"generate_polynomials.cpython-36.pyc <span style='color:#111;'> 1.19KB </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 232B </span>","children":null,"spread":false},{"title":"prepare_for_training.py <span style='color:#111;'> 1.26KB </span>","children":null,"spread":false},{"title":"generate_polynomials.py <span style='color:#111;'> 1.42KB </span>","children":null,"spread":false},{"title":"normalize.py <span style='color:#111;'> 544B </span>","children":null,"spread":false}],"spread":true},{"title":"hypothesis","children":[{"title":"sigmoid.py <span style='color:#111;'> 155B </span>","children":null,"spread":false},{"title":"sigmoid_gradient.py <span style='color:#111;'> 218B </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"sigmoid_gradient.cpython-36.pyc <span style='color:#111;'> 428B </span>","children":null,"spread":false},{"title":"__init__.cpython-36.pyc <span style='color:#111;'> 269B </span>","children":null,"spread":false},{"title":"sigmoid.cpython-36.pyc <span style='color:#111;'> 376B </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 116B </span>","children":null,"spread":false}],"spread":true},{"title":"__pycache__","children":[{"title":"__init__.cpython-36.pyc <span style='color:#111;'> 140B </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true}],"spread":true}]