python机器学习 聚类算法Kmeans代码实现 包含所用数据集和代码

上传者: danielxinhj | 上传时间: 2022-10-27 14:06:52 | 文件大小: 5.03MB | 文件类型: ZIP
python机器学习 聚类算法Kmeans代码实现 包含所用数据集和代码 适合新手

文件下载

资源详情

[{"title":"( 28 个子文件 5.03MB ) python机器学习 聚类算法Kmeans代码实现 包含所用数据集和代码","children":[{"title":"data","children":[{"title":"world-happiness-report-2017.csv <span style='color:#111;'> 28.69KB </span>","children":null,"spread":false},{"title":"microchips-tests.csv <span style='color:#111;'> 2.20KB </span>","children":null,"spread":false},{"title":"fashion-mnist-demo.csv <span style='color:#111;'> 10.57MB </span>","children":null,"spread":false},{"title":"server-operational-params.csv <span style='color:#111;'> 11.36KB </span>","children":null,"spread":false},{"title":"non-linear-regression-x-y.csv <span style='color:#111;'> 4.41KB </span>","children":null,"spread":false},{"title":"mnist-demo.csv <span style='color:#111;'> 17.43MB </span>","children":null,"spread":false},{"title":"iris.csv <span style='color:#111;'> 3.77KB </span>","children":null,"spread":false}],"spread":true},{"title":"kmeans","children":[{"title":"k_means.py <span style='color:#111;'> 2.16KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"k_means.cpython-36.pyc <span style='color:#111;'> 1.80KB </span>","children":null,"spread":false}],"spread":true},{"title":"demo.py <span style='color:#111;'> 1.53KB </span>","children":null,"spread":false}],"spread":true},{"title":"utils","children":[{"title":"features","children":[{"title":"generate_sinusoids.py <span style='color:#111;'> 388B </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"normalize.cpython-36.pyc <span style='color:#111;'> 522B </span>","children":null,"spread":false},{"title":"prepare_for_training.cpython-36.pyc <span style='color:#111;'> 904B </span>","children":null,"spread":false},{"title":"generate_sinusoids.cpython-36.pyc <span style='color:#111;'> 531B </span>","children":null,"spread":false},{"title":"__init__.cpython-36.pyc <span style='color:#111;'> 355B </span>","children":null,"spread":false},{"title":"generate_polynomials.cpython-36.pyc <span style='color:#111;'> 1.19KB </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 232B </span>","children":null,"spread":false},{"title":"prepare_for_training.py <span style='color:#111;'> 1.26KB </span>","children":null,"spread":false},{"title":"generate_polynomials.py <span style='color:#111;'> 1.42KB </span>","children":null,"spread":false},{"title":"normalize.py <span style='color:#111;'> 544B </span>","children":null,"spread":false}],"spread":true},{"title":"hypothesis","children":[{"title":"sigmoid.py <span style='color:#111;'> 155B </span>","children":null,"spread":false},{"title":"sigmoid_gradient.py <span style='color:#111;'> 218B </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"sigmoid_gradient.cpython-36.pyc <span style='color:#111;'> 428B </span>","children":null,"spread":false},{"title":"__init__.cpython-36.pyc <span style='color:#111;'> 269B </span>","children":null,"spread":false},{"title":"sigmoid.cpython-36.pyc <span style='color:#111;'> 376B </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 116B </span>","children":null,"spread":false}],"spread":true},{"title":"__pycache__","children":[{"title":"__init__.cpython-36.pyc <span style='color:#111;'> 140B </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明