FaceCompareServer.zip

上传者: ct6816678 | 上传时间: 2021-09-26 15:39:02 | 文件大小: 188.3MB | 文件类型: ZIP
使用google 的facenet的人脸识别技术,准确度还是可以的。可以很方便的嵌入到自己的程序中。

文件下载

资源详情

[{"title":"( 65 个子文件 188.3MB ) FaceCompareServer.zip","children":[{"title":"FaceCompareServer","children":[{"title":"generative","children":[{"title":"models","children":[{"title":"dfc_vae_large.py <span style='color:#111;'> 5.16KB </span>","children":null,"spread":false},{"title":"dfc_vae_resnet.py <span style='color:#111;'> 6.11KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"vae_base.py <span style='color:#111;'> 2.22KB </span>","children":null,"spread":false},{"title":"dfc_vae.py <span style='color:#111;'> 4.80KB </span>","children":null,"spread":false}],"spread":true},{"title":"train_vae.py <span style='color:#111;'> 13.61KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"calculate_attribute_vectors.py <span style='color:#111;'> 8.69KB </span>","children":null,"spread":false},{"title":"modify_attribute.py <span style='color:#111;'> 5.99KB </span>","children":null,"spread":false}],"spread":true},{"title":"d1.bmp <span style='color:#111;'> 401.05KB </span>","children":null,"spread":false},{"title":"freeze_graph.py <span style='color:#111;'> 4.62KB </span>","children":null,"spread":false},{"title":"3.png <span style='color:#111;'> 19.87KB </span>","children":null,"spread":false},{"title":"models","children":[{"title":"inception_resnet_v1.py <span style='color:#111;'> 11.49KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 16B </span>","children":null,"spread":false},{"title":"dummy.py <span style='color:#111;'> 2.50KB </span>","children":null,"spread":false},{"title":"squeezenet.py <span style='color:#111;'> 3.32KB </span>","children":null,"spread":false},{"title":"inception_resnet_v2.py <span style='color:#111;'> 13.05KB </span>","children":null,"spread":false}],"spread":true},{"title":"facenet.py <span style='color:#111;'> 22.82KB </span>","children":null,"spread":false},{"title":"train_tripletloss.py <span style='color:#111;'> 24.32KB </span>","children":null,"spread":false},{"title":"download_and_extract.py <span style='color:#111;'> 1.71KB </span>","children":null,"spread":false},{"title":"face_compare_server.py <span style='color:#111;'> 2.74KB </span>","children":null,"spread":false},{"title":"Face2","children":[{"title":"20190430153534_face.bmp <span style='color:#111;'> 401.05KB </span>","children":null,"spread":false},{"title":"20190430154413_face.bmp <span style='color:#111;'> 401.05KB </span>","children":null,"spread":false},{"title":"20190430153840_face.bmp <span style='color:#111;'> 401.05KB </span>","children":null,"spread":false},{"title":"20190430152742_face.bmp <span style='color:#111;'> 401.05KB </span>","children":null,"spread":false},{"title":"20190430153127_face.bmp <span style='color:#111;'> 401.05KB </span>","children":null,"spread":false},{"title":"20190430154432_face.bmp <span style='color:#111;'> 401.05KB </span>","children":null,"spread":false},{"title":"20190430152748_face.bmp <span style='color:#111;'> 401.05KB </span>","children":null,"spread":false},{"title":"20190430153843_face.bmp <span style='color:#111;'> 401.05KB </span>","children":null,"spread":false},{"title":"20190430152800_face.bmp <span style='color:#111;'> 401.05KB </span>","children":null,"spread":false}],"spread":true},{"title":"FaceModel","children":[{"title":"model-20170512-110547.ckpt-250000.index <span style='color:#111;'> 21.95KB </span>","children":null,"spread":false},{"title":"model-20170512-110547.meta <span style='color:#111;'> 33.24MB </span>","children":null,"spread":false},{"title":"model-20170512-110547.ckpt-250000.data-00000-of-00001 <span style='color:#111;'> 108.68MB </span>","children":null,"spread":false},{"title":"20170512-110547.pb <span style='color:#111;'> 89.01MB </span>","children":null,"spread":false}],"spread":true},{"title":"classifier.py <span style='color:#111;'> 7.92KB </span>","children":null,"spread":false},{"title":"face_compare_client.py <span style='color:#111;'> 727B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 16B </span>","children":null,"spread":false},{"title":"1.png <span style='color:#111;'> 18.09KB </span>","children":null,"spread":false},{"title":"2.png <span style='color:#111;'> 19.87KB </span>","children":null,"spread":false},{"title":"validate_on_lfw.py <span style='color:#111;'> 8.59KB </span>","children":null,"spread":false},{"title":"calculate_filtering_metrics.py <span style='color:#111;'> 5.88KB </span>","children":null,"spread":false},{"title":"train_softmax.py <span style='color:#111;'> 31.53KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"face_compare.cpython-37.pyc <span style='color:#111;'> 771B </span>","children":null,"spread":false},{"title":"facenet.cpython-37.pyc <span style='color:#111;'> 18.68KB </span>","children":null,"spread":false},{"title":"facenet.cpython-36.pyc <span style='color:#111;'> 18.69KB </span>","children":null,"spread":false},{"title":"__init__.cpython-37.pyc <span style='color:#111;'> 148B </span>","children":null,"spread":false},{"title":"py_t2.cpython-37.pyc <span style='color:#111;'> 408B </span>","children":null,"spread":false},{"title":"__init__.cpython-36.pyc <span style='color:#111;'> 158B </span>","children":null,"spread":false},{"title":"compare_new.cpython-37.pyc <span style='color:#111;'> 460B </span>","children":null,"spread":false},{"title":"face_compare.cpython-36.pyc <span style='color:#111;'> 1.77KB </span>","children":null,"spread":false}],"spread":false},{"title":"align","children":[{"title":"align_dataset_mtcnn.py <span style='color:#111;'> 8.11KB </span>","children":null,"spread":false},{"title":"detect_face.py <span style='color:#111;'> 30.95KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"detect_face.cpython-36.pyc <span style='color:#111;'> 21.57KB </span>","children":null,"spread":false},{"title":"detect_face.cpython-37.pyc <span style='color:#111;'> 21.29KB </span>","children":null,"spread":false},{"title":"__init__.cpython-37.pyc <span style='color:#111;'> 154B </span>","children":null,"spread":false},{"title":"__init__.cpython-36.pyc <span style='color:#111;'> 150B </span>","children":null,"spread":false}],"spread":false},{"title":"det1.npy <span style='color:#111;'> 26.73KB </span>","children":null,"spread":false},{"title":"det2.npy <span style='color:#111;'> 392.27KB </span>","children":null,"spread":false},{"title":"det3.npy <span style='color:#111;'> 1.49MB </span>","children":null,"spread":false}],"spread":false},{"title":"lfw.py <span style='color:#111;'> 3.48KB </span>","children":null,"spread":false},{"title":"py_t2.py <span style='color:#111;'> 160B </span>","children":null,"spread":false},{"title":"decode_msceleb_dataset.py <span style='color:#111;'> 3.54KB </span>","children":null,"spread":false},{"title":"d2.bmp <span style='color:#111;'> 401.05KB </span>","children":null,"spread":false},{"title":"face_compare_folder.py <span style='color:#111;'> 5.72KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明