基于MINST数据库的采用单层CNN提取手写体数字图像的特征并识别,识别达到97以上

上传者: ccsss22 | 上传时间: 2022-05-07 21:05:50 | 文件大小: 54.81MB | 文件类型: RAR
利用单层CNN网络提取手写体数字图像的特征,并采用双层全连接网络完成手写体数字的多分类任务。实验数据集选取无偏性较好的MNIST数据。

文件下载

资源详情

( 22 个子文件 54.81MB ) 基于MINST数据库的采用单层CNN提取手写体数字图像的特征并识别,识别达到97以上
4基于MINST数据库的采用单层CNN提取手写体数字图像的特征并识别,识别达到97以上,
main.m 1.71KB
evaluation.m 986B
CrossEntropy.m 66B
data
test_data.mat 3.87MB
val_data.mat 239.72KB
test_tag.mat 28.26KB
val_tag.mat 5.90KB
train_data.mat 23.03MB
MNISTData.mat 29.50MB
train_tag.mat 156.00KB
readme.txt 377B
Data_Processor.m 676B
Softmax.m 63B
figure
F5.png 39.16KB
F1.png 137.19KB
F3.png 41.56KB
F2.png 53.61KB
F8.png 25.90KB
F7.png 21.61KB
F4.png 39.21KB
train.m 1.76KB
result.m 248B
[{"title":"( 22 个子文件 54.81MB ) 基于MINST数据库的采用单层CNN提取手写体数字图像的特征并识别,识别达到97以上","children":[{"title":"4基于MINST数据库的采用单层CNN提取手写体数字图像的特征并识别,识别达到97以上,","children":[{"title":"main.m <span style='color:#111;'> 1.71KB </span>","children":null,"spread":false},{"title":"evaluation.m <span style='color:#111;'> 986B </span>","children":null,"spread":false},{"title":"CrossEntropy.m <span style='color:#111;'> 66B </span>","children":null,"spread":false},{"title":"data","children":[{"title":"test_data.mat <span style='color:#111;'> 3.87MB </span>","children":null,"spread":false},{"title":"val_data.mat <span style='color:#111;'> 239.72KB </span>","children":null,"spread":false},{"title":"test_tag.mat <span style='color:#111;'> 28.26KB </span>","children":null,"spread":false},{"title":"val_tag.mat <span style='color:#111;'> 5.90KB </span>","children":null,"spread":false},{"title":"train_data.mat <span style='color:#111;'> 23.03MB </span>","children":null,"spread":false},{"title":"MNISTData.mat <span style='color:#111;'> 29.50MB </span>","children":null,"spread":false},{"title":"train_tag.mat <span style='color:#111;'> 156.00KB </span>","children":null,"spread":false},{"title":"readme.txt <span style='color:#111;'> 377B </span>","children":null,"spread":false}],"spread":true},{"title":"Data_Processor.m <span style='color:#111;'> 676B </span>","children":null,"spread":false},{"title":"Softmax.m <span style='color:#111;'> 63B </span>","children":null,"spread":false},{"title":"figure","children":[{"title":"F5.png <span style='color:#111;'> 39.16KB </span>","children":null,"spread":false},{"title":"F1.png <span style='color:#111;'> 137.19KB </span>","children":null,"spread":false},{"title":"F3.png <span style='color:#111;'> 41.56KB </span>","children":null,"spread":false},{"title":"F2.png <span style='color:#111;'> 53.61KB </span>","children":null,"spread":false},{"title":"F8.png <span style='color:#111;'> 25.90KB </span>","children":null,"spread":false},{"title":"F7.png <span style='color:#111;'> 21.61KB </span>","children":null,"spread":false},{"title":"F4.png <span style='color:#111;'> 39.21KB </span>","children":null,"spread":false}],"spread":true},{"title":"train.m <span style='color:#111;'> 1.76KB </span>","children":null,"spread":false},{"title":"result.m <span style='color:#111;'> 248B </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明
服务器状态检查中...