聚类算法及评价可视化工具箱

上传者: buaasuozi | 上传时间: 2019-12-21 19:29:58 | 文件大小: 2.01MB | 文件类型: zip
2005年由匈牙利Department of Process Engineering University of Veszprem的Balazs Balasko, Janos Abonyi and Balazs Feil编写的模糊聚类及数据分析工具箱。 代码很全面,包括文档说明。 包括聚类算法Kmeans Kmedoids FCM GK GG,聚类评价方法,聚类降维可视化方法。 其中,说明文档我做了书签,便于大家阅读。 PS:本来没打算索要资源分,因为是人家开源发布的东西。但是,上传资源的时候点选了资源分,就没有0分的选项,最后只能选择这个最低1分了。如果没有帐号或者资源分不够,可以联系我,我分享给你们。或者去找原资源网站,或者去可以不收取资源分的地方下载吧!大家共同学习进步! QQ:379786867(亦可微信)

文件下载

资源详情

[{"title":"( 48 个子文件 2.01MB ) 聚类算法及评价可视化工具箱","children":[{"title":"Demos","children":[{"title":"projection","children":[{"title":"WINEDAT.TXT <span style='color:#111;'> 39.14KB </span>","children":null,"spread":false},{"title":"visual_call.m <span style='color:#111;'> 4.02KB </span>","children":null,"spread":false},{"title":"wisconsin.wk1 <span style='color:#111;'> 86.86KB </span>","children":null,"spread":false},{"title":"IRIS.MAT <span style='color:#111;'> 8.38KB </span>","children":null,"spread":false}],"spread":true},{"title":"PCAexample","children":[{"title":"nDexample.m <span style='color:#111;'> 379B </span>","children":null,"spread":false},{"title":"PCAexample.m <span style='color:#111;'> 483B </span>","children":null,"spread":false}],"spread":true},{"title":"clusteringexamples","children":[{"title":"motorcycle","children":[{"title":"GKcall.m <span style='color:#111;'> 543B </span>","children":null,"spread":false},{"title":"Kmeanscall.m <span style='color:#111;'> 408B </span>","children":null,"spread":false},{"title":"FCMcall.m <span style='color:#111;'> 542B </span>","children":null,"spread":false},{"title":"GGcall.m <span style='color:#111;'> 698B </span>","children":null,"spread":false},{"title":"Kmedoidcall.m <span style='color:#111;'> 409B </span>","children":null,"spread":false},{"title":"MotorCycle.txt <span style='color:#111;'> 7.90KB </span>","children":null,"spread":false}],"spread":true},{"title":"synthetic","children":[{"title":"GKcall.m <span style='color:#111;'> 498B </span>","children":null,"spread":false},{"title":"Kmeanscall.m <span style='color:#111;'> 536B </span>","children":null,"spread":false},{"title":"FCMcall.m <span style='color:#111;'> 499B </span>","children":null,"spread":false},{"title":"GGcall.m <span style='color:#111;'> 598B </span>","children":null,"spread":false},{"title":"Kmedoidcall.m <span style='color:#111;'> 508B </span>","children":null,"spread":false},{"title":"nDexample.m <span style='color:#111;'> 381B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"comparing","children":[{"title":"GKcall.m <span style='color:#111;'> 676B </span>","children":null,"spread":false},{"title":"Kmeanscall.m <span style='color:#111;'> 421B </span>","children":null,"spread":false},{"title":"FCMcall.m <span style='color:#111;'> 637B </span>","children":null,"spread":false},{"title":"GGcall.m <span style='color:#111;'> 716B </span>","children":null,"spread":false},{"title":"Kmedoidcall.m <span style='color:#111;'> 422B </span>","children":null,"spread":false},{"title":"nDexample.m <span style='color:#111;'> 336B </span>","children":null,"spread":false},{"title":"modvalidity.m <span style='color:#111;'> 3.43KB </span>","children":null,"spread":false}],"spread":true},{"title":"optnumber","children":[{"title":"optnumber.m <span style='color:#111;'> 1.57KB </span>","children":null,"spread":false},{"title":"MotorCycle.txt <span style='color:#111;'> 7.90KB </span>","children":null,"spread":false},{"title":"modvalidity.m <span style='color:#111;'> 3.43KB </span>","children":null,"spread":false}],"spread":true},{"title":"normexample","children":[{"title":"normexample.m <span style='color:#111;'> 373B </span>","children":null,"spread":false},{"title":"data3.txt <span style='color:#111;'> 5.57KB </span>","children":null,"spread":false}],"spread":true},{"title":"clustevalexample","children":[{"title":"data2.txt <span style='color:#111;'> 2.88KB </span>","children":null,"spread":false},{"title":"evalexample.m <span style='color:#111;'> 539B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"FUZZCLUST","children":[{"title":"clust_normalize.m <span style='color:#111;'> 705B </span>","children":null,"spread":false},{"title":"SAMMON.M <span style='color:#111;'> 4.40KB </span>","children":null,"spread":false},{"title":"Kmeans.m <span style='color:#111;'> 1.91KB </span>","children":null,"spread":false},{"title":"FCMclust.m <span style='color:#111;'> 1.45KB </span>","children":null,"spread":false},{"title":"GKclust.m <span style='color:#111;'> 3.04KB </span>","children":null,"spread":false},{"title":"PCA.m <span style='color:#111;'> 1.32KB </span>","children":null,"spread":false},{"title":"Kmedoid.m <span style='color:#111;'> 2.25KB </span>","children":null,"spread":false},{"title":"GGclust.m <span style='color:#111;'> 2.49KB </span>","children":null,"spread":false},{"title":"PROJEVAL.M <span style='color:#111;'> 1.15KB </span>","children":null,"spread":false},{"title":"SAMSTR.M <span style='color:#111;'> 610B </span>","children":null,"spread":false},{"title":"validity.m <span style='color:#111;'> 4.00KB </span>","children":null,"spread":false},{"title":"clust_denormalize.m <span style='color:#111;'> 710B </span>","children":null,"spread":false},{"title":"clusteval.m <span style='color:#111;'> 3.10KB </span>","children":null,"spread":false},{"title":"FuzSam.m <span style='color:#111;'> 2.38KB </span>","children":null,"spread":false},{"title":"nDexample.m <span style='color:#111;'> 379B </span>","children":null,"spread":false}],"spread":false},{"title":"FuzzyClusteringToolbox_withBookMark.pdf <span style='color:#111;'> 2.00MB </span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明