machine-learning-notes机器学习笔记

上传者: bruce__ray | 上传时间: 2021-02-28 17:09:14 | 文件大小: 1002KB | 文件类型: GZ
machine-learning-notes机器学习笔记

文件下载

资源详情

[{"title":"( 49 个子文件 1002KB ) machine-learning-notes机器学习笔记","children":[{"title":"895.machine-learning-notes__hschen0712","children":[{"title":".gitignore <span style='color:#111;'> 52B </span>","children":null,"spread":false},{"title":"Machine-Learning","children":[{"title":"softmax-crossentropy-derivative.ipynb <span style='color:#111;'> 7.41KB </span>","children":null,"spread":false},{"title":"svd-ridge-regression.ipynb <span style='color:#111;'> 6.67KB </span>","children":null,"spread":false},{"title":"xgboost-notes","children":[{"title":"xgboost-note1.ipynb <span style='color:#111;'> 6.04KB </span>","children":null,"spread":false}],"spread":true},{"title":"implement-softmax-in-theano.ipynb <span style='color:#111;'> 14.34KB </span>","children":null,"spread":false},{"title":"svd1.ipynb <span style='color:#111;'> 8.21KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 4.30KB </span>","children":null,"spread":false},{"title":"ML-Foundation","children":[{"title":"lecture-1.ipynb <span style='color:#111;'> 7.84KB </span>","children":null,"spread":false}],"spread":true},{"title":"Deep-Learning","children":[{"title":"theano-notes","children":[{"title":"part3-shared-variable.ipynb <span style='color:#111;'> 7.93KB </span>","children":null,"spread":false},{"title":"part4-random-number.ipynb <span style='color:#111;'> 63.13KB </span>","children":null,"spread":false},{"title":"part2-simple-computations.ipynb <span style='color:#111;'> 38.99KB </span>","children":null,"spread":false},{"title":"part6-scan-function.ipynb <span style='color:#111;'> 10.11KB </span>","children":null,"spread":false},{"title":"part7-dimshuffle.ipynb <span style='color:#111;'> 10.56KB </span>","children":null,"spread":false}],"spread":true},{"title":"install-caffe-in-windows.ipynb <span style='color:#111;'> 181.99KB </span>","children":null,"spread":false},{"title":"keras-notes","children":[{"title":"keras-tips.ipynb <span style='color:#111;'> 5.38KB </span>","children":null,"spread":false}],"spread":true},{"title":"back-propagation-through-time.ipynb <span style='color:#111;'> 15.25KB </span>","children":null,"spread":false},{"title":"mxnet-notes","children":[{"title":"operators-in-mxnet.ipynb <span style='color:#111;'> 17.44KB </span>","children":null,"spread":false},{"title":"2-mxnet-symbolic.ipynb <span style='color:#111;'> 33.61KB </span>","children":null,"spread":false},{"title":"1-installation.ipynb <span style='color:#111;'> 190.12KB </span>","children":null,"spread":false},{"title":"mshadow-expression-template-tutorial.ipynb <span style='color:#111;'> 16.25KB </span>","children":null,"spread":false},{"title":"mshadow-note2-data-structures.ipynb <span style='color:#111;'> 2.09KB </span>","children":null,"spread":false}],"spread":true},{"title":"rnn-numpy.ipynb <span style='color:#111;'> 31.22KB </span>","children":null,"spread":false},{"title":"back-propagation-in-matrix-form.ipynb <span style='color:#111;'> 7.72KB </span>","children":null,"spread":false},{"title":"singular-value-of-random-matrix.ipynb <span style='color:#111;'> 54.06KB </span>","children":null,"spread":false}],"spread":true},{"title":"NLP","children":[{"title":"naive-bayes.ipynb <span style='color:#111;'> 31.24KB </span>","children":null,"spread":false},{"title":"latent-dirichlet-allocation-1.ipynb <span style='color:#111;'> 16.67KB </span>","children":null,"spread":false},{"title":"gensim-lda-tutorial.ipynb <span style='color:#111;'> 73.72KB </span>","children":null,"spread":false},{"title":"latent-dirichlet-allocation-2.ipynb <span style='color:#111;'> 23.25KB </span>","children":null,"spread":false}],"spread":true},{"title":"PRML","children":[{"title":"Chap3-Linear-Models-For-Regression","children":[{"title":"3.1-linear-basis-function-models.ipynb <span style='color:#111;'> 13.48KB </span>","children":null,"spread":false},{"title":"summary-baysian-linear-regression.ipynb <span style='color:#111;'> 13.15KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chap1-Introduction","children":[{"title":"1.2-probability-theory.ipynb <span style='color:#111;'> 27.56KB </span>","children":null,"spread":false},{"title":"Summary-three-curve-fitting-approaches.ipynb <span style='color:#111;'> 5.29KB </span>","children":null,"spread":false},{"title":"1.1-polynomial-curve-fitting.ipynb <span style='color:#111;'> 275.39KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chap2-Probability-Distributions","children":[{"title":"2.1-binary-variables.ipynb <span style='color:#111;'> 55.11KB </span>","children":null,"spread":false},{"title":"2.3-the-gaussian-distribution.ipynb <span style='color:#111;'> 34.22KB </span>","children":null,"spread":false},{"title":"2.2-multinomial-variables.ipynb <span style='color:#111;'> 7.65KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"Math","children":[{"title":"Convex Optimization","children":[{"title":"2-convex-set.ipynb <span style='color:#111;'> 112.08KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"CS229","children":[{"title":"RL1.ipynb <span style='color:#111;'> 7.41KB </span>","children":null,"spread":false},{"title":"RL2.ipynb <span style='color:#111;'> 12.77KB </span>","children":null,"spread":false},{"title":"EM.ipynb <span style='color:#111;'> 7.82KB </span>","children":null,"spread":false},{"title":"GLM.ipynb <span style='color:#111;'> 11.92KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.ipynb <span style='color:#111;'> 5.57KB </span>","children":null,"spread":false},{"title":"YidaXu-ML","children":[{"title":"exponential-family-variational-inference.ipynb <span style='color:#111;'> 7.17KB </span>","children":null,"spread":false},{"title":"sampling-methods-part1.ipynb <span style='color:#111;'> 497.32KB </span>","children":null,"spread":false},{"title":"EM-review.ipynb <span style='color:#111;'> 6.35KB </span>","children":null,"spread":false},{"title":"sampling-methods-part2.ipynb <span style='color:#111;'> 15.34KB </span>","children":null,"spread":false},{"title":"variational-inference-for-gaussian-distribution.ipynb <span style='color:#111;'> 4.93KB </span>","children":null,"spread":false},{"title":"variational-inference.ipynb <span style='color:#111;'> 5.84KB </span>","children":null,"spread":false},{"title":"exponential-family.ipynb <span style='color:#111;'> 5.99KB </span>","children":null,"spread":false}],"spread":true}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明