上传者: banana
|
上传时间: 2025-11-06 19:44:37
|
文件大小: 18.64MB
|
文件类型: PDF
本书系统介绍深度强化学习的核心理论与实践方法,涵盖价值-based、策略-based和模型-based学习,深入探讨多智能体、分层与元学习等前沿主题。结合Python代码实例与经典算法,帮助读者从基础到进阶全面掌握强化学习技术。配套网站提供课件、代码与练习资源,适合研究生与研究人员自学或教学使用。
深度强化学习是人工智能领域的一个重要分支,它将深度学习与强化学习相结合,通过智能体与环境的交互学习来实现最优决策。深度强化学习在游戏、机器人控制、自动驾驶等众多领域都取得了突破性进展。
价值基础、策略基础和模型基础学习是深度强化学习的三大主要学习方式。价值基础学习侧重于学习状态的价值函数或状态-动作对的价值函数,以此评估每个动作的期望回报。策略基础学习则直接学习一个策略,即从状态到动作的映射。模型基础学习则关注学习环境的模型,这个模型可以用来预测未来状态或未来奖励。
多智能体、分层和元学习是深度强化学习中的一些前沿主题。多智能体学习涉及多个智能体在环境中相互作用,并学习如何协调或竞争。分层学习是通过分解复杂任务为更小的子任务,并学习不同层次的策略来解决更复杂问题的一种方法。元学习是一种学习如何学习的技术,它使智能体能够快速适应新环境或任务。
Python由于其简洁性和强大的库支持,成为深度强化学习实现和实验的首选语言。在本书中,作者提供了Python代码实例和经典算法,帮助读者更直观地理解和实现深度强化学习。此外,配合网站提供的课件、代码和练习资源,读者可以通过实践加深对深度强化学习的理解。
深度强化学习入门与实践适合研究生和研究人员自学或教学使用。它不仅为初学者提供了学习深度强化学习的基础知识,同时也为进阶学习者提供了深入了解前沿主题的途径。本书的内容深度与广度兼备,系统全面地介绍了深度强化学习的相关理论和实践技巧,使其成为该领域的实用学习资源。
本书的内容结构清晰,从基础概念的介绍开始,逐步深入到高级话题,确保读者能够逐步建立深度强化学习的知识体系。每一章节都紧密联系理论与实践,通过代码实例来强化理论知识的理解。书中的理论介绍和算法分析都紧密结合实际应用,使读者能够在实践中发现和解决问题。
通过对这本书的学习,读者将能够掌握深度强化学习的关键技术,并在实际问题中应用这些技术,从而在自己的研究或工作中实现突破和创新。同时,本书的资源和实例将帮助读者构建一个坚实的基础,以便在人工智能领域中不断探索和前进。由于深度强化学习是目前人工智能研究的热点,本书的出版无疑对于推动相关领域的学术进步和实践发展具有重要意义。