Python数据分析与应用PPT、教案、实训数据、习题答案.

上传者: N201871643 | 上传时间: 2022-06-18 09:06:24 | 文件大小: 72.45MB | 文件类型: ZIP
本文以任务为导向,全面地介绍数据分析的流程和Python数据分 析库的应用,详细讲解利用Python解决企业实际问题的方法。全书共9章,* 1章介绍了数据分析的基本概念等相关知识;* 2~6章介绍了Python数据分析的常用库及其应用,涵盖NumPy数值计算、Matplotlib数据可视化、pandas统计分析、使用pandas进行数据预处理、使用scikit-learn构建模型,较为全面地阐述了Python数据分析方法;第7~9章结合之前所学的数据分析技术,进行企业综合案例数据分析。除* 1章外,本文各章都含了实训与课后习题,通过练习和操作实践,帮助读者巩固所学的内容。

文件下载

资源详情

[{"title":"( 59 个子文件 72.45MB ) Python数据分析与应用PPT、教案、实训数据、习题答案.","children":[{"title":"37304-Python数据分析与应用-课后实训数据","children":[{"title":"第7章","children":[{"title":"credit_card.csv <span style='color:#111;'> 4.25MB </span>","children":null,"spread":false}],"spread":true},{"title":"第4章","children":[{"title":"Training_LogInfo.csv <span style='color:#111;'> 18.08MB </span>","children":null,"spread":false},{"title":"文件说明.xlsx <span style='color:#111;'> 8.94KB </span>","children":null,"spread":false},{"title":"Training_Userupdate.csv <span style='color:#111;'> 14.61MB </span>","children":null,"spread":false},{"title":"Training_Master.csv <span style='color:#111;'> 19.38MB </span>","children":null,"spread":false}],"spread":true},{"title":"第5章","children":[{"title":"ele_loss.csv <span style='color:#111;'> 1.80KB </span>","children":null,"spread":false},{"title":"alarm.csv <span style='color:#111;'> 809B </span>","children":null,"spread":false},{"title":"missing_data.xls <span style='color:#111;'> 24.50KB </span>","children":null,"spread":false},{"title":"model.xls <span style='color:#111;'> 39.50KB </span>","children":null,"spread":false}],"spread":true},{"title":"第9章","children":[{"title":"USER_INFO_M.csv <span style='color:#111;'> 139.48MB </span>","children":null,"spread":false}],"spread":true},{"title":"第6章","children":[{"title":"winequality.csv <span style='color:#111;'> 82.23KB </span>","children":null,"spread":false},{"title":"wine.csv <span style='color:#111;'> 10.70KB </span>","children":null,"spread":false}],"spread":true},{"title":"第3章","children":[{"title":"populations.npz <span style='color:#111;'> 2.26KB </span>","children":null,"spread":false}],"spread":true},{"title":"第8章","children":[{"title":"字段说明.xlsx <span style='color:#111;'> 10.06KB </span>","children":null,"spread":false},{"title":"income_tax.csv <span style='color:#111;'> 1.12KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"1","children":null,"spread":false},{"title":"37304-Python数据分析与应用-习题答案","children":[{"title":"第7章","children":[{"title":"第7章选择题答案.txt <span style='color:#111;'> 48B </span>","children":null,"spread":false},{"title":"code","children":[{"title":"第7章操作题.py <span style='color:#111;'> 1.14KB </span>","children":null,"spread":false}],"spread":true},{"title":"data","children":[{"title":"data.csv <span style='color:#111;'> 403B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"第4章","children":[{"title":"code","children":[{"title":"第4章操作题.py <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false}],"spread":true},{"title":"第4章选择题答案.txt <span style='color:#111;'> 80B </span>","children":null,"spread":false},{"title":"data","children":[{"title":"mtcars.csv <span style='color:#111;'> 1.77KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"第1章","children":[{"title":"第1章选择题答案.txt <span style='color:#111;'> 105B </span>","children":null,"spread":false},{"title":"HelloWorld.html <span style='color:#111;'> 243.61KB </span>","children":null,"spread":false}],"spread":true},{"title":"第5章","children":[{"title":"code","children":[{"title":"第5章操作题.py <span style='color:#111;'> 1.49KB </span>","children":null,"spread":false}],"spread":true},{"title":"第5章选择题答案.txt <span style='color:#111;'> 99B </span>","children":null,"spread":false}],"spread":true},{"title":"第9章","children":[{"title":"第9章选择题答案.txt <span style='color:#111;'> 48B </span>","children":null,"spread":false},{"title":"code","children":[{"title":"第9章操作题.py <span style='color:#111;'> 881B </span>","children":null,"spread":false}],"spread":true},{"title":"data","children":[{"title":"data.csv <span style='color:#111;'> 878B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"第6章","children":[{"title":"code","children":[{"title":"第6章操作题.py <span style='color:#111;'> 1.79KB </span>","children":null,"spread":false}],"spread":true},{"title":"第6章选择题答案.txt <span style='color:#111;'> 52B </span>","children":null,"spread":false}],"spread":true},{"title":"第2章","children":[{"title":"第2章选择题答案.txt <span style='color:#111;'> 52B </span>","children":null,"spread":false},{"title":"code","children":[{"title":"第2章操作题.py <span style='color:#111;'> 666B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"第3章","children":[{"title":"code","children":[{"title":"第3章操作题.py <span style='color:#111;'> 1.37KB </span>","children":null,"spread":false}],"spread":true},{"title":"第3章选择题答案.txt <span style='color:#111;'> 50B </span>","children":null,"spread":false},{"title":"tmp","children":[{"title":"iris散点图.png <span style='color:#111;'> 104.49KB </span>","children":null,"spread":false},{"title":"iris各特征箱线图.png <span style='color:#111;'> 11.29KB </span>","children":null,"spread":false}],"spread":true},{"title":"data","children":[{"title":"iris.npz <span style='color:#111;'> 6.47KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"第8章","children":[{"title":"code","children":[{"title":"第8章操作题.py <span style='color:#111;'> 269B </span>","children":null,"spread":false}],"spread":true},{"title":"data","children":[{"title":"data.csv <span style='color:#111;'> 944B </span>","children":null,"spread":false}],"spread":true},{"title":"第8章选择题答案.txt <span style='color:#111;'> 48B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"37304-Python数据分析与应用-教案","children":[{"title":"第4章 Pandas统计分析基础 教案.docx <span style='color:#111;'> 28.45KB </span>","children":null,"spread":false},{"title":"第7章 航空公司客户价值分析 教案.docx <span style='color:#111;'> 29.60KB </span>","children":null,"spread":false},{"title":"第8章 市财政收入分析预测 教案.docx <span style='color:#111;'> 27.76KB </span>","children":null,"spread":false},{"title":"第3章 Matplotlib绘图基础 教案.docx <span style='color:#111;'> 29.65KB </span>","children":null,"spread":false},{"title":"第1章 Python数据分析概述 教案.docx <span style='color:#111;'> 28.91KB </span>","children":null,"spread":false},{"title":"第5章 Pandas数据预处理 教案.docx <span style='color:#111;'> 28.12KB </span>","children":null,"spread":false},{"title":"第6章 使用sklearn构建模型 教案.docx <span style='color:#111;'> 29.29KB </span>","children":null,"spread":false},{"title":"第9章 家用热水器用户行为分析与事件识别 教案.docx <span style='color:#111;'> 28.00KB </span>","children":null,"spread":false},{"title":"第2章 NumPy数值计算基础 教案.docx <span style='color:#111;'> 29.09KB </span>","children":null,"spread":false}],"spread":true},{"title":"37304-Python数据分析与应用-PPT课件","children":[{"title":"第1章 Python 数据分析概述.ppt <span style='color:#111;'> 4.07MB </span>","children":null,"spread":false},{"title":"第5章 使用pandas进行数据预处理.ppt <span style='color:#111;'> 2.61MB </span>","children":null,"spread":false},{"title":"第4章 pandas统计分析基础(1).ppt <span style='color:#111;'> 2.14MB </span>","children":null,"spread":false},{"title":"第6章 使用scikit-learn构建模型.ppt <span style='color:#111;'> 2.47MB </span>","children":null,"spread":false},{"title":"第9章 家用热水器用户行为分析与事件识别.ppt <span style='color:#111;'> 4.30MB </span>","children":null,"spread":false},{"title":"第4章 pandas统计分析基础(2).ppt <span style='color:#111;'> 1.56MB </span>","children":null,"spread":false},{"title":"第2章 NumPy 数值计算基础.ppt <span style='color:#111;'> 2.59MB </span>","children":null,"spread":false},{"title":"第8章 财政收入预测分析.ppt <span style='color:#111;'> 4.22MB </span>","children":null,"spread":false},{"title":"第3章 Matplotlib数据可视化基础.ppt <span style='color:#111;'> 3.57MB </span>","children":null,"spread":false},{"title":"第7章 航空公司客户价值分析.ppt <span style='color:#111;'> 3.57MB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明