[{"title":"( 25 个子文件 74.67MB ) 机器学习论文合集(pdf格式).zip","children":[{"title":"paper","children":[{"title":"15 Girshick R . Fast R-CNN[J]. Computer Science.pdf <span style='color:#111;'> 713.99KB </span>","children":null,"spread":false},{"title":"12Image Super-Resolution Using Deep Convolutional Networks.pdf <span style='color:#111;'> 11.63MB </span>","children":null,"spread":false},{"title":"14Rich feature hierarchies for accurate object detection and semantic segmentation.pdf <span style='color:#111;'> 6.23MB </span>","children":null,"spread":false},{"title":"10 Image captioning by self-retrieval with partially labeled data.pdf <span style='color:#111;'> 2.16MB </span>","children":null,"spread":false},{"title":"20Visualizing and understanding convolutional networks.pdf <span style='color:#111;'> 34.56MB </span>","children":null,"spread":false},{"title":"11 Exploring visual relationship for image captioning.pdf <span style='color:#111;'> 2.93MB </span>","children":null,"spread":false},{"title":"25Variational autoencoder for deep learning of images, labels and captions..pdf <span style='color:#111;'> 1.47MB </span>","children":null,"spread":false},{"title":"9 Person re-identification by local maximal occurrence representation and metric learning.pdf <span style='color:#111;'> 1.43MB </span>","children":null,"spread":false},{"title":"18 Reducing the dimensionality of data with neural networks.pdf <span style='color:#111;'> 360.60KB </span>","children":null,"spread":false},{"title":"24Disentangled representation learning gan for pose-invariant face recognition..pdf <span style='color:#111;'> 930.52KB </span>","children":null,"spread":false},{"title":"17 Gradient-based learning applied to document recognition.pdf <span style='color:#111;'> 867.14KB </span>","children":null,"spread":false},{"title":"19 Imagenet classification with deep convolutional neural networks.pdf <span style='color:#111;'> 1.35MB </span>","children":null,"spread":false},{"title":"5Factor Group-Sparse Regularization for Efficient Low-Rank Matrix Recovery.pdf <span style='color:#111;'> 241.83KB </span>","children":null,"spread":false},{"title":"23Generative adversarial nets.pdf <span style='color:#111;'> 518.05KB </span>","children":null,"spread":false},{"title":"2Efficient algorithms for online decision problems.pdf <span style='color:#111;'> 259.96KB </span>","children":null,"spread":false},{"title":"22 Group normalization.pdf <span style='color:#111;'> 926.02KB </span>","children":null,"spread":false},{"title":"13Deconvolutional networks,.pdf <span style='color:#111;'> 1.06MB </span>","children":null,"spread":false},{"title":"1Follow the moving leader in deep learning.pdf <span style='color:#111;'> 1023.67KB </span>","children":null,"spread":false},{"title":"16You Only Look Once Unified, Real-Time Object Detection.pdf <span style='color:#111;'> 5.05MB </span>","children":null,"spread":false},{"title":"3A method for stochastic optimization..pdf <span style='color:#111;'> 570.94KB </span>","children":null,"spread":false},{"title":"8 Person re-identification by probabilistic relative distance comparison.pdf <span style='color:#111;'> 981.17KB </span>","children":null,"spread":false},{"title":"Efficient sparse coding algorithms.zip <span style='color:#111;'> 45.03KB </span>","children":null,"spread":false},{"title":"7 Efficient training of very deep neural networks for supervised hashing.pdf <span style='color:#111;'> 1.58MB </span>","children":null,"spread":false},{"title":"4Efficient sparse coding algorithms.pdf <span style='color:#111;'> 1.06MB </span>","children":null,"spread":false},{"title":"21Going deeper with convolutions.pdf <span style='color:#111;'> 1.16MB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]