多元统计分析.zip

上传者: 40757930 | 上传时间: 2021-05-19 19:45:42 | 文件大小: 5.27MB | 文件类型: ZIP
多元统计分析包括 多元分析、聚类分析、主成分分析、因子分析、判别分析。 这个资料包括这些内容的具体介绍和MATLAB代码实现。

文件下载

资源详情

[{"title":"( 44 个子文件 5.27MB ) 多元统计分析.zip","children":[{"title":"多元统计分析","children":[{"title":"判别分析","children":[{"title":"example10_02.m <span style='color:#111;'> 1.93KB </span>","children":null,"spread":false},{"title":"example10_01.m <span style='color:#111;'> 981B </span>","children":null,"spread":false},{"title":"王学民-判别分析.ppt <span style='color:#111;'> 1.76MB </span>","children":null,"spread":false},{"title":"example10_03.m <span style='color:#111;'> 1.81KB </span>","children":null,"spread":false},{"title":"fisher.m <span style='color:#111;'> 7.51KB </span>","children":null,"spread":false},{"title":"examp10_01.xls <span style='color:#111;'> 16.50KB </span>","children":null,"spread":false}],"spread":true},{"title":"多元分析","children":[{"title":"26第二十六章 多元分析.pdf <span style='color:#111;'> 693.40KB </span>","children":null,"spread":false},{"title":"主成份分析","children":[{"title":"sn.txt <span style='color:#111;'> 106B </span>","children":null,"spread":false},{"title":"gj.txt <span style='color:#111;'> 708B </span>","children":null,"spread":false},{"title":"zhuchengfen.m <span style='color:#111;'> 1.18KB </span>","children":null,"spread":false},{"title":"Untitled14.m <span style='color:#111;'> 599B </span>","children":null,"spread":false}],"spread":true},{"title":"聚类分析","children":[{"title":"最短距离法与最长距离法","children":[{"title":"juleifenxi2.m <span style='color:#111;'> 404B </span>","children":null,"spread":false},{"title":"juleifenxi1.m <span style='color:#111;'> 698B </span>","children":null,"spread":false}],"spread":true},{"title":"服装标准制定中的变量聚类法","children":[{"title":"ch.txt <span style='color:#111;'> 683B </span>","children":null,"spread":false},{"title":"juleifenxi3.m <span style='color:#111;'> 460B </span>","children":null,"spread":false}],"spread":true},{"title":"R型聚类分析","children":[{"title":"gj.txt <span style='color:#111;'> 708B </span>","children":null,"spread":false},{"title":"Rjuleifenxi1.m <span style='color:#111;'> 513B </span>","children":null,"spread":false}],"spread":true},{"title":"Q型聚类分析","children":[{"title":"gj.txt <span style='color:#111;'> 708B </span>","children":null,"spread":false},{"title":"Qjulei.m <span style='color:#111;'> 666B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"因子分析","children":[{"title":"yinzixuanzhuan.m <span style='color:#111;'> 575B </span>","children":null,"spread":false},{"title":"yinzixuanzhuan2.m <span style='color:#111;'> 566B </span>","children":null,"spread":false},{"title":"yinzifenxi.m <span style='color:#111;'> 838B </span>","children":null,"spread":false},{"title":"r.txt <span style='color:#111;'> 172B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"聚类分析","children":[{"title":"examp09_04.xls <span style='color:#111;'> 19.00KB </span>","children":null,"spread":false},{"title":"examp09_03.xls <span style='color:#111;'> 16.50KB </span>","children":null,"spread":false},{"title":"K-means聚类分析.pdf <span style='color:#111;'> 205.82KB </span>","children":null,"spread":false},{"title":"K-means聚类.pdf <span style='color:#111;'> 248.13KB </span>","children":null,"spread":false},{"title":"example09_02.m <span style='color:#111;'> 1.46KB </span>","children":null,"spread":false},{"title":"examp09_02.xls <span style='color:#111;'> 21.00KB </span>","children":null,"spread":false},{"title":"K-Means算法研究及在文本聚类中的应用.doc <span style='color:#111;'> 796.33KB </span>","children":null,"spread":false},{"title":"K-Means聚类分析在我国专利申请分析中的应用.pdf <span style='color:#111;'> 376.09KB </span>","children":null,"spread":false},{"title":"example09_04.m <span style='color:#111;'> 1.24KB </span>","children":null,"spread":false},{"title":"example09_01.m <span style='color:#111;'> 3.27KB </span>","children":null,"spread":false},{"title":"初始中心优化的K_Means聚类算法.pdf <span style='color:#111;'> 264.30KB </span>","children":null,"spread":false},{"title":"example09_03.m <span style='color:#111;'> 1020B </span>","children":null,"spread":false},{"title":"王学民-聚类分析.ppt <span style='color:#111;'> 1.80MB </span>","children":null,"spread":false}],"spread":false},{"title":"主成分分析","children":[{"title":"王学民-主成分分析.ppt <span style='color:#111;'> 1.67MB </span>","children":null,"spread":false},{"title":"example11_02.m <span style='color:#111;'> 4.05KB </span>","children":null,"spread":false},{"title":"examp11_02.xls <span style='color:#111;'> 19.00KB </span>","children":null,"spread":false},{"title":"example11_01.m <span style='color:#111;'> 1.28KB </span>","children":null,"spread":false}],"spread":true},{"title":"因子分析","children":[{"title":"examp12_02.xls <span style='color:#111;'> 20.50KB </span>","children":null,"spread":false},{"title":"example12_01.m <span style='color:#111;'> 1.94KB </span>","children":null,"spread":false},{"title":"example12_02.m <span style='color:#111;'> 1.94KB </span>","children":null,"spread":false},{"title":"王学民-因子分析.ppt <span style='color:#111;'> 1.98MB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明