Yolo相关论文.rar

上传者: Joejwu | 上传时间: 2021-09-08 18:11:33 | 文件大小: 88.01MB | 文件类型: RAR
因为需要,调研了目标检测领域的文章,其中尤以yolo系列为主,并根据其他文章的不同侧重点,进行了简单划分,可省去大量的检索文献的时间!(文章最新截至2021年8月)

文件下载

资源详情

[{"title":"( 54 个子文件 88.01MB ) Yolo相关论文.rar","children":[{"title":"5综述","children":[{"title":"2107.07927.pdf <span style='color:#111;'> 2.39MB </span>","children":null,"spread":false},{"title":"Faster_R-CNN_and_YOLO_based_Vehicle_detection_A_Survey.pdf <span style='color:#111;'> 2.13MB </span>","children":null,"spread":false},{"title":"Fang2021_Chapter_SurveyOnImageObjectDetectionAl (1).pdf <span style='color:#111;'> 1.07MB </span>","children":null,"spread":false},{"title":"Fang2021_Chapter_SurveyOnImageObjectDetectionAl.pdf <span style='color:#111;'> 1.07MB </span>","children":null,"spread":false},{"title":"Invited-2021.pdf <span style='color:#111;'> 1.15MB </span>","children":null,"spread":false},{"title":"2104.11892.pdf <span style='color:#111;'> 12.47MB </span>","children":null,"spread":false},{"title":"A survey of image object detection algorithm based on deep learning.pdf <span style='color:#111;'> 1.67MB </span>","children":null,"spread":false},{"title":"2002.06797.pdf <span style='color:#111;'> 750.48KB </span>","children":null,"spread":false},{"title":"researchobjectdetection.pdf <span style='color:#111;'> 1.34MB </span>","children":null,"spread":false},{"title":"j.cosrev.2020.100301.pdf <span style='color:#111;'> 2.44MB </span>","children":null,"spread":false},{"title":"118780H.pdf <span style='color:#111;'> 411.21KB </span>","children":null,"spread":false},{"title":"Liu2020_Article_DeepLearningForGenericObjectDe.pdf <span style='color:#111;'> 7.50MB </span>","children":null,"spread":false},{"title":"1908.03673.pdf <span style='color:#111;'> 2.23MB </span>","children":null,"spread":false},{"title":"1905.05055.pdf <span style='color:#111;'> 7.03MB </span>","children":null,"spread":false},{"title":"Exploring_Deep_Learning-Based_Architecture_Strategies_Applications_and_Current_Trends_in_Generic_Object_Detection_A_Comprehensive_Review.pdf <span style='color:#111;'> 8.76MB </span>","children":null,"spread":false}],"spread":false},{"title":"3Yolov3&Yolov4&Yolov5结构图","children":[{"title":"yolov4","children":[{"title":"网络结构图_白底","children":[{"title":"yolov4_1.png <span style='color:#111;'> 162.66KB </span>","children":null,"spread":false},{"title":"yolov4_2.png <span style='color:#111;'> 184.65KB </span>","children":null,"spread":false}],"spread":true},{"title":"网络结构图_透明底","children":[{"title":"yolov4_1.png <span style='color:#111;'> 162.66KB </span>","children":null,"spread":false},{"title":"yolov4_2.png <span style='color:#111;'> 184.65KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"yolov5","children":[{"title":"网络结构图_白底","children":[{"title":"yolov5s_1.png <span style='color:#111;'> 400.18KB </span>","children":null,"spread":false},{"title":"yolov5s_2.png <span style='color:#111;'> 432.13KB </span>","children":null,"spread":false}],"spread":true},{"title":"网络结构图_透明底","children":[{"title":"yolov5s_1.png <span style='color:#111;'> 191.80KB </span>","children":null,"spread":false},{"title":"yolov5s_2.png <span style='color:#111;'> 217.37KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"yolov3","children":[{"title":"网络结构图_白底","children":[{"title":"yolov3_2.png <span style='color:#111;'> 274.09KB </span>","children":null,"spread":false},{"title":"yolov3_1.png <span style='color:#111;'> 236.25KB </span>","children":null,"spread":false}],"spread":true},{"title":"网络结构图_透明底","children":[{"title":"yolov3_2.png <span style='color:#111;'> 135.76KB </span>","children":null,"spread":false},{"title":"yolov3_1.png <span style='color:#111;'> 107.03KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true},{"title":"0Yolo的几代","children":[{"title":"Redmon_You_Only_Look_CVPR_2016_paper.pdf <span style='color:#111;'> 1.21MB </span>","children":null,"spread":false},{"title":"yolov5地址.txt <span style='color:#111;'> 37B </span>","children":null,"spread":false},{"title":"yolov4.pdf <span style='color:#111;'> 3.76MB </span>","children":null,"spread":false},{"title":"Redmon_YOLO9000_Better_Faster_CVPR_2017_paper.pdf <span style='color:#111;'> 5.14MB </span>","children":null,"spread":false},{"title":"YOLOv3.pdf <span style='color:#111;'> 2.14MB </span>","children":null,"spread":false}],"spread":true},{"title":"2其他目标检测算法","children":[{"title":"Swin Transformer","children":[{"title":"2103.14030.pdf <span style='color:#111;'> 1.28MB </span>","children":null,"spread":false}],"spread":true},{"title":"fcos","children":[{"title":"Tian_FCOS_Fully_Convolutional_One-Stage_Object_Detection_ICCV_2019_paper.pdf <span style='color:#111;'> 592.49KB </span>","children":null,"spread":false}],"spread":true},{"title":"Effcientdet","children":[{"title":"Tan_EfficientDet_Scalable_and_Efficient_Object_Detection_CVPR_2020_paper.pdf <span style='color:#111;'> 755.41KB </span>","children":null,"spread":false}],"spread":true},{"title":"centernet","children":[{"title":"Duan_CenterNet_Keypoint_Triplets_for_Object_Detection_ICCV_2019_paper.pdf <span style='color:#111;'> 2.88MB </span>","children":null,"spread":false}],"spread":true},{"title":"nas-fpn","children":[{"title":"Ghiasi_NAS-FPN_Learning_Scalable_Feature_Pyramid_Architecture_for_Object_Detection_CVPR_2019_paper.pdf <span style='color:#111;'> 1.38MB </span>","children":null,"spread":false}],"spread":true},{"title":"Ge_OTA_Optimal_Transport_Assignment_for_Object_Detection_CVPR_2021_paper.pdf <span style='color:#111;'> 5.93MB </span>","children":null,"spread":false},{"title":"Deformable ConvNets v2","children":[{"title":"Zhu_Deformable_ConvNets_V2_More_Deformable_Better_Results_CVPR_2019_paper.pdf <span style='color:#111;'> 1.88MB </span>","children":null,"spread":false}],"spread":true},{"title":"Paddle Anchor Free","children":[{"title":"2104.13534.pdf <span style='color:#111;'> 1.67MB </span>","children":null,"spread":false}],"spread":true},{"title":"trientnet","children":[{"title":"Li_Scale-Aware_Trident_Networks_for_Object_Detection_ICCV_2019_paper.pdf <span style='color:#111;'> 903.48KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"4量化","children":[{"title":"2107.08382.pdf <span style='color:#111;'> 465.70KB </span>","children":null,"spread":false}],"spread":true},{"title":"1基于Yolo的改进","children":[{"title":"轻量级","children":[{"title":"SS-YOLO_An_Object_Detection_Algorithm_based_on_YOLOv3_and_ShuffleNet.pdf <span style='color:#111;'> 735.90KB </span>","children":null,"spread":false},{"title":"2104.10419.pdf <span style='color:#111;'> 367.08KB </span>","children":null,"spread":false},{"title":"Efficient_Yolo_A_Lightweight_Model_For_Embedded_Deep_Learning_Object_Detection.pdf <span style='color:#111;'> 162.98KB </span>","children":null,"spread":false},{"title":"1910.01271.pdf <span style='color:#111;'> 260.68KB </span>","children":null,"spread":false},{"title":"2107.04829.pdf <span style='color:#111;'> 375.39KB </span>","children":null,"spread":false}],"spread":true},{"title":"多域检测","children":[{"title":"2106.13939.pdf <span style='color:#111;'> 4.24MB </span>","children":null,"spread":false},{"title":"2106.01483.pdf <span style='color:#111;'> 6.48MB </span>","children":null,"spread":false}],"spread":true},{"title":"迭代","children":[{"title":"2007.12099.pdf <span style='color:#111;'> 495.89KB </span>","children":null,"spread":false},{"title":"yolo-x.pdf <span style='color:#111;'> 444.99KB </span>","children":null,"spread":false},{"title":"yolo-r.pdf <span style='color:#111;'> 3.22MB </span>","children":null,"spread":false},{"title":"2009.05697.pdf <span style='color:#111;'> 1.94MB </span>","children":null,"spread":false},{"title":"2103.09460.pdf <span style='color:#111;'> 1.30MB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明