手写数字识别(pytorch版)

上传者: HUTAOhh | 上传时间: 2022-06-13 21:04:52 | 文件大小: 20.97MB | 文件类型: RAR
这是一个基于pytorch的手写数字识别小项目,使用minist数据集进行训练,最高可达99%精度。 首先,此代码逻辑清晰,思路简单,便于用户修改(修改网络结构,优化器等),用户可在config.py文件中修改epoch、batch等配置参数,来达到更好的效果。 其次,该代码固定了各种随机初始化参数的种子,这样便于用户复现最好的效果。 最后,用户需要配置pytorch环境,再打开pycharm即可运行代码,无需任何修改。

文件下载

资源详情

[{"title":"( 14 个子文件 20.97MB ) 手写数字识别(pytorch版)","children":[{"title":"minist","children":[{"title":"data","children":[{"title":"MNIST","children":[{"title":"raw","children":[{"title":"t10k-images-idx3-ubyte.gz <span style='color:#111;'> 1.57MB </span>","children":null,"spread":false},{"title":"t10k-labels-idx1-ubyte <span style='color:#111;'> 9.77KB </span>","children":null,"spread":false},{"title":"t10k-labels-idx1-ubyte.gz <span style='color:#111;'> 4.44KB </span>","children":null,"spread":false},{"title":"train-labels-idx1-ubyte.gz <span style='color:#111;'> 28.20KB </span>","children":null,"spread":false},{"title":"train-images-idx3-ubyte <span style='color:#111;'> 44.86MB </span>","children":null,"spread":false},{"title":"train-images-idx3-ubyte.gz <span style='color:#111;'> 9.45MB </span>","children":null,"spread":false},{"title":"t10k-images-idx3-ubyte <span style='color:#111;'> 7.48MB </span>","children":null,"spread":false},{"title":"train-labels-idx1-ubyte <span style='color:#111;'> 58.60KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true},{"title":"test.py <span style='color:#111;'> 164B </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 3.02KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"config.cpython-38.pyc <span style='color:#111;'> 225B </span>","children":null,"spread":false},{"title":"net.cpython-38.pyc <span style='color:#111;'> 1.68KB </span>","children":null,"spread":false}],"spread":true},{"title":"net.py <span style='color:#111;'> 1.49KB </span>","children":null,"spread":false},{"title":"config.py <span style='color:#111;'> 110B </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明