机器学习课程作业-基于卷积神经网络的手写数字识别matlab源码+项目说明.zip

上传者: DeepLearning_ | 上传时间: 2022-12-16 15:26:15 | 文件大小: 12.96MB | 文件类型: ZIP
机器学习课程作业_基于卷积神经网络的手写数字识别matlab源码+项目说明.zip 函数说明: read_label和read_image分别为读取标签和图像数据点的函数 convolve是实现卷积的函数,pool是实现池化的函数 SGD_MSGD是主函数,可以直接运行得到答案(把minibatch设为1就是SGD,大于1就是MSGD) OPTIMAL是优化版的主函数,可以直接运行得到答案 OPTIMAL_FINALE是最终优化版的主函数,可以直接运行得到答案 toolbox是用工具箱函数写的CNN,可以直接运行得到答案

文件下载

资源详情

[{"title":"( 23 个子文件 12.96MB ) 机器学习课程作业-基于卷积神经网络的手写数字识别matlab源码+项目说明.zip","children":[{"title":"基于卷积神经网络的手写数字识别matlab源码+项目说明","children":[{"title":"matlab_CODE","children":[{"title":"t10k-labels-idx1-ubyte <span style='color:#111;'> 9.77KB </span>","children":null,"spread":false},{"title":"CNN_SGD.rar <span style='color:#111;'> 11.11MB </span>","children":null,"spread":false},{"title":"pool.m <span style='color:#111;'> 529B </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"read_image.m <span style='color:#111;'> 563B </span>","children":null,"spread":false},{"title":"SGD_MSGD.m <span style='color:#111;'> 7.68KB </span>","children":null,"spread":false},{"title":"read_label.m <span style='color:#111;'> 263B </span>","children":null,"spread":false},{"title":"t10k-images-idx3-ubyte <span style='color:#111;'> 7.48MB </span>","children":null,"spread":false},{"title":"convolve.m <span style='color:#111;'> 1.23KB </span>","children":null,"spread":false},{"title":"toolbox.m <span style='color:#111;'> 1.79KB </span>","children":null,"spread":false},{"title":"OPTIMAL_FINALE.m <span style='color:#111;'> 9.96KB </span>","children":null,"spread":false},{"title":"OPTIMAL.m <span style='color:#111;'> 8.39KB </span>","children":null,"spread":false}],"spread":false},{"title":"实验图","children":[{"title":"OPT150.png <span style='color:#111;'> 25.51KB </span>","children":null,"spread":false},{"title":"tool1501.png <span style='color:#111;'> 72.42KB </span>","children":null,"spread":false},{"title":"tool20001.png <span style='color:#111;'> 66.03KB </span>","children":null,"spread":false},{"title":"Opt.png <span style='color:#111;'> 25.43KB </span>","children":null,"spread":false},{"title":"tool15001.png <span style='color:#111;'> 69.06KB </span>","children":null,"spread":false},{"title":"OPT200.png <span style='color:#111;'> 25.64KB </span>","children":null,"spread":false},{"title":"CNN.png <span style='color:#111;'> 23.07KB </span>","children":null,"spread":false},{"title":"CNN_SGD.png <span style='color:#111;'> 24.96KB </span>","children":null,"spread":false},{"title":"tool2001.png <span style='color:#111;'> 71.35KB </span>","children":null,"spread":false},{"title":"CNN150.png <span style='color:#111;'> 24.25KB </span>","children":null,"spread":false}],"spread":true},{"title":"项目说明.txt <span style='color:#111;'> 1.50KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明