软件类型: 进销存(源代码) 数 据 库: ADO 语 言: VB6+ADO 级 别: 简单 备 注: 软件工程课程设计。 希望能够给你带来学习上的帮助。 目录: .\src 程序所有源代码 .\src\data 数据库文件 .\src\help 做帮助文件源代码和所用到的图片 .\src\images 程序中动态调用的图片或图标文件 .\src\ocx 本程序所用的OCX文件 .\src\素材 制作本程序所做图的源文件 安装: 无需安装,只要你的机器支持ADO就可以使用。 无需设置ODBC等。
2024-10-27 16:40:27 1.1MB VB+ADO
1
《吉林大学数据库系统应用开发期末大作业》是一个涵盖了数据库系统设计与实现的综合项目,旨在帮助学生深入理解和应用数据库技术。在这个项目中,学生需要编写代码并提交详细的报告,以展示他们在数据库应用开发中的技能和理解。根据描述,该项目包含了五道题目,其中部分代码可能参考了CSDN上前辈的经验分享,同时强调了报告撰写的重要性,特别是记录错误和调试过程,这有助于提升评分。 在数据库系统应用开发中,以下几个核心知识点是必不可少的: 1. **SQL语言**:SQL(Structured Query Language)是用于管理关系数据库的标准语言。学生需要熟练掌握数据查询、插入、更新和删除操作,以及创建表、视图和索引等数据库对象的语法。 2. **数据库设计**:包括需求分析、概念模型设计(如ER模型)、逻辑模型设计(如关系模型)和物理模型设计。学生需要理解如何根据业务需求进行数据库表结构的设计,确保数据的一致性和完整性。 3. **关系代数与元组关系演算**:这是数据库理论的基础,有助于理解SQL查询的内部工作原理。通过学习这些理论,学生可以更好地优化查询性能。 4. **数据库事务与并发控制**:数据库事务确保数据的一致性,而并发控制处理多个用户同时访问数据库的情况。理解ACID属性(原子性、一致性、隔离性和持久性)和锁机制至关重要。 5. **数据库性能优化**:包括索引的使用、查询优化、存储优化等,是提升数据库效率的关键。学生应学会分析执行计划,找出性能瓶颈,并采取相应措施。 6. **数据库备份与恢复**:理解备份策略和恢复技术,如增量备份、全备份和差异备份,以应对数据丢失或损坏的情况。 7. **数据库安全性**:包括用户权限管理、角色定义、访问控制列表等,保护数据库免受未授权访问和恶意攻击。 在完成这个项目的过程中,学生们不仅需要编写有效和高效的SQL查询,还需要编写程序来与数据库交互,可能涉及的语言有Java、Python或PHP等。此外,他们还需具备良好的文档编写能力,能够清楚地阐述设计思路、实现过程以及遇到的问题和解决方案,这对提高项目评价极为有利。 "吉林大学数据库系统应用开发期末大作业"是一个全面考察学生数据库知识和实践能力的项目。通过这个项目,学生们可以深入学习数据库系统的各个层面,提升自己的问题解决和团队协作能力,为未来在IT行业中的发展奠定坚实基础。
2024-10-27 15:27:15 1.9MB
1
《基于A-Star搜索算法的迷宫小游戏的设计》论文word版本。论文包括摘要、关键词、导言、相关理论、技术实施、结果讨论、参考文献等几个部分。论文的排版已根据毕业论文的格式排版好,读者可根据实际情况修改。 ### 基于A-Star搜索算法的迷宫小游戏设计相关知识点 #### 一、引言与背景 在当今快速发展的科技环境中,特别是人工智能领域,各种智能算法正不断推动着技术的进步。A-Star搜索算法作为其中之一,在路径规划方面的高效性和准确性备受瞩目。这种算法不仅在学术界得到了广泛的研究,在工业界的应用也非常广泛,比如无人驾驶车辆、无人机导航以及地图导航系统等。这些应用场景都对路径规划提出了高效、实时的需求。 #### 二、A-Star搜索算法的核心原理 **A-Star搜索算法**是一种启发式的路径搜索算法,它结合了Dijkstra算法的全局搜索能力和贪心算法的局部搜索能力,通过引入启发式函数(heuristic function)来指导搜索过程,从而在保证找到最优解的同时提高搜索效率。该算法的关键在于启发式函数的选择,一个好的启发式函数能够有效地引导搜索过程向着目标前进。 - **启发式函数**(Heuristic Function): 用于估计从当前节点到目标节点的距离或成本。 - **当前代价**(g(n)): 从起始节点到当前节点的实际路径成本。 - **预估代价**(h(n)): 从当前节点到目标节点的估计成本。 - **综合成本**(f(n)=g(n)+h(n)): 用于决定搜索过程中下一个要探索的节点。 #### 三、A-Star搜索算法的特性与优势 A-Star搜索算法相比于其他路径搜索算法(如深度优先搜索、广度优先搜索等)具有以下几个显著特点: 1. **效率高**: A-Star搜索算法能够通过启发式函数有效地减少不必要的搜索,从而提高搜索效率。 2. **精确性**: 当启发式函数是可接受的(即不超过真实成本),A-Star搜索算法能够保证找到最优路径。 3. **适应性强**: A-Star搜索算法能够很好地适应各种不同的应用场景,只需适当调整启发式函数即可。 #### 四、技术实施详解 在本文档中提到的迷宫小游戏设计中,作者使用了Python编程语言,并结合Pygame库来实现游戏界面和A-Star算法的具体实现。下面将详细介绍这一过程: - **游戏界面创建**: 使用Pygame库创建一个可视化界面,用户可以在该界面上设置起点、终点和障碍物。通过简单的鼠标点击和键盘输入操作,用户可以自由地构建自己的迷宫环境。 - **A-Star算法实现**: 在确定了起点和终点后,算法开始运行。算法初始化一个开放列表和一个关闭列表。开放列表包含所有待处理的节点,而关闭列表则记录了已经处理过的节点。然后,算法不断地从开放列表中选择具有最低f值(f(n) = g(n) + h(n))的节点进行扩展,直到找到目标节点为止。在这个过程中,算法会更新每个节点的g值和h值,并根据需要调整开放列表和关闭列表。 #### 五、启发式函数的选择 在A-Star搜索算法中,选择合适的启发式函数至关重要。常见的启发式函数包括但不限于: - **曼哈顿距离**(Manhattan Distance): 对于平面网格地图,曼哈顿距离计算从当前节点到目标节点沿着方格网格的最短路径的步数。这是一种非常直观且容易计算的距离度量方法。 - **欧几里得距离**(Euclidean Distance): 对于非网格地图,可以使用欧几里得距离作为启发式函数。这种方法考虑了两点之间的直线距离,适用于更复杂的地图结构。 #### 六、实验结果与分析 通过对迷宫小游戏的实现和测试,我们可以观察到A-Star搜索算法在路径规划问题中表现出色。算法能够快速找到从起点到终点的最短路径,并且能够有效避开障碍物。此外,通过对比不同的启发式函数,我们还可以发现不同启发式函数对搜索效率的影响。例如,使用曼哈顿距离作为启发式函数通常比使用欧几里得距离更快,但可能会导致路径稍微更长一些。 #### 七、结论与展望 A-Star搜索算法在迷宫游戏的设计中展现出了其强大的路径规划能力。通过合理的启发式函数选择和算法实现,不仅能够确保找到最优路径,还能够极大地提高搜索效率。未来的研究可以进一步探索如何优化启发式函数,以适应更多复杂的应用场景,比如三维迷宫或动态障碍物等情况。此外,结合机器学习等先进技术,也有望进一步提升算法的性能和灵活性。
2024-10-27 09:28:10 119KB 毕业设计 课程论文
1
全国大学生电子设计竞赛是中国高等教育界极具影响力的实践性科技竞赛之一。自1994年创立以来,这项竞赛不仅见证了中国电子工程教育的发展,也激励了一代又一代学子投身于电子科技创新的热潮中。《全国大学生电子设计竞赛历年真题(1994-2023)》资源汇集了近30年来的所有竞赛题目,为各位电子工程专业的学生、教师及科研人员提供了宝贵的学习和研究资料。 该资源涵盖了各个届次的真题,包括基础电路分析、模拟电路设计、数字电路设计、信号处理、通信原理、微机原理及应用等领域的题目,几乎囊括了电子工程学科的所有基础知识和前沿技术。每一年的题目都反映了当时电子科技的发展趋势和教育界的关注点,同时也折射出社会经济的需求和科技发展的挑战。 资源中的真题不仅包括了问题描述和设计要求,还提供了相应的参考答案和评分标准。这些真题不只是竞赛的回顾,更是实践教育的精华。通过对这些真题的学习和探讨,学生可以加深对电子工程知识的理解,提升解决实际问题的能力;教师可以根据这些题目来优化教学内容和方法,使教学更加贴合行业和科研的需要;科研人员可以窥见电子工程教育的发展脉络,从而把握研究方向和创新点。 此外,该资源对于准备参
2024-10-25 14:44:32 974.06MB O奖论文
1
《基于PHP的网上商城开发设计与实现》 在当今互联网时代,网上商城已经成为商业运营的重要组成部分,而PHP作为一款开源、高效、易学的服务器端脚本语言,被广泛应用于Web开发领域,尤其是构建电子商务系统。这个项目是基于PHP实现的网上购物商城,对于初学者来说,是一个极好的学习实例,可以帮助他们深入了解PHP在实际应用中的运用。 1. **PHP基础**:PHP是一种通用的、跨平台的、嵌入HTML的脚本语言,它的语法简洁且功能强大,特别适合于Web开发。在商城项目中,PHP主要负责处理用户请求,动态生成网页内容,与数据库交互,以及实现业务逻辑。 2. **MVC模式**:该项目可能采用了Model-View-Controller(MVC)架构模式,这是一种常见的软件设计模式,将业务逻辑、数据处理和用户界面分离,使得代码更易于维护和扩展。Model负责数据模型,View负责显示,Controller负责处理用户请求并协调Model和View。 3. **数据库设计**:网上商城通常需要管理商品、订单、用户等信息,因此会涉及复杂的数据库设计,如商品表、用户表、订单表、支付表等。开发者可能使用了MySQL或类似的SQL数据库管理系统来存储这些数据。 4. **前端技术**:尽管题目未明确提及,但一个完整的网上商城项目通常会结合HTML、CSS和JavaScript来构建用户界面。HTML负责页面结构,CSS负责样式,JavaScript用于增加交互性,例如添加到购物车、实时更新库存等。 5. **支付接口集成**:为了实现在线支付功能,商城可能集成了支付宝、微信支付等第三方支付接口。这需要理解API文档,编写处理支付请求和回调的PHP代码。 6. **安全性考虑**:在开发过程中,必须重视安全性,防止SQL注入、XSS攻击等网络安全问题。PHP提供了一些内置函数,如`htmlspecialchars()`和`mysqli_real_escape_string()`,可以用来过滤用户输入,保护系统安全。 7. **购物车和订单处理**:购物车功能涉及到商品的添加、删除、数量调整,而订单处理则包括订单创建、状态跟踪、支付确认等。这些都需要通过PHP实现,并与数据库进行交互。 8. **用户认证与权限管理**:商城系统通常需要用户注册和登录功能,实现用户身份验证。此外,根据用户角色(如普通用户、管理员等),可能有不同的操作权限。 9. **商品分类与搜索**:为了方便用户浏览和查找商品,商城可能实现了商品分类展示和搜索功能。这可能涉及PHP对数据库查询的优化和全文搜索引擎的集成。 10. **物流与库存管理**:后台管理系统可能会有物流跟踪和库存管理功能,帮助商家实时监控商品库存,自动更新库存信息。 通过分析这个基于PHP的网上商城源代码,初学者不仅可以学习到PHP的基本语法和Web开发技巧,还能了解实际项目中的数据库设计、前后端交互、安全防护等多个方面,为今后的Web开发生涯打下坚实基础。在实践中,可以逐步深入,优化代码,提升系统的性能和用户体验。
2024-10-25 14:26:26 1.39MB 网上商城 购物网站
1
【计算机毕业设计】Python源代码图书推荐系统的实现与解析 图书推荐系统是现代信息技术在图书领域中的重要应用,它能够根据用户的阅读习惯、喜好和行为数据,为用户推荐符合其口味的书籍。在这个项目中,我们将深入探讨如何利用Python语言构建一个这样的系统。 一、Python源码基础 Python作为一门强大的编程语言,因其简洁明了的语法和丰富的库支持,被广泛应用于数据分析、机器学习以及Web开发等领域。在这个图书推荐系统中,Python将作为主要的开发语言,通过处理和分析大量的图书数据,构建推荐算法。 1. 数据处理:Python的pandas库可以帮助我们快速地读取、清洗和预处理数据。通过对用户历史阅读记录、图书信息等进行整合,我们可以得到用于推荐的训练集。 2. 数据分析:NumPy和SciPy库提供了强大的数值计算和科学计算功能,对于处理推荐系统中涉及的统计和矩阵运算非常有帮助。 二、推荐系统理论 推荐系统通常分为基于内容的推荐和协同过滤推荐两种主要类型。 1. 基于内容的推荐:这种推荐方法依赖于对用户历史行为的分析,找出用户的偏好特征,然后推荐具有相似特征的图书。例如,如果用户喜欢阅读科幻类书籍,系统会推荐其他科幻类书籍。 2. 协同过滤推荐:协同过滤是目前最常见的推荐系统算法,分为用户-用户协同过滤和物品-物品协同过滤。通过分析用户之间的相似性或物品之间的相似性,为用户推荐未曾接触但可能感兴趣的图书。 三、具体实现 在这个Python图书推荐系统中,我们可以采用以下步骤: 1. 数据获取:收集用户的行为数据,如浏览记录、购买记录、评分等,同时获取图书的元数据,如类别、作者、出版社等。 2. 数据预处理:清洗数据,处理缺失值,统一数据格式,构建用户-图书交互矩阵。 3. 特征工程:提取用户和图书的特征,如用户的历史偏好、图书的类别等。 4. 模型选择:可以选用基于内容的推荐算法,如TF-IDF、余弦相似度;或者协同过滤算法,如User-Based、Item-Based。 5. 训练模型:使用训练集对模型进行训练,调整模型参数,优化推荐效果。 6. 预测与推荐:对新的用户行为数据进行预测,生成推荐列表。 7. 评估与优化:通过准确率、召回率、覆盖率等指标评估推荐效果,不断迭代优化模型。 四、项目挑战与优化方向 1. 冷启动问题:新用户或新图书缺乏历史数据,推荐准确性可能会降低。解决方案可以是利用流行度进行初始推荐,或结合用户的基本信息进行推荐。 2. 稀疏性问题:用户-图书交互矩阵可能很稀疏,影响推荐效果。可以考虑使用矩阵分解技术,如SVD,降低维度,提高计算效率。 3. 实时性问题:推荐系统需要实时响应用户行为。可以通过增量学习或流式计算来提高系统的响应速度。 通过这个毕业设计项目,学生不仅能够掌握Python编程技能,还能深入了解推荐系统的核心算法,为未来在大数据分析、个性化推荐等领域的发展打下坚实的基础。
2024-10-25 10:39:02 5.86MB python源码 毕业设计 推荐系统
1
源代码-百度影音电影全自动更新爬取程序.zip
2024-10-25 08:48:08 1.93MB asp
1
leetcode-习题集资源源代码leetcode-习题集资源源代码leetcode-习题集资源源代码leetcode-习题集资源源代码leetcode-习题集资源源代码
2024-10-24 17:51:28 6KB leetcode
1
针对岩石物理试验中出现的孔隙流体(油水)两相分离现象,应用格子Boltzmann(LB)方法中的两相不相溶流体的伪势模型,对油水界面动力学行为进行微观数值模拟,分析多孔介质中两相流动的微观特征,并从理论上给出两相不相溶流体界面张力因子Gf值的确定方法。模拟由于表面张力造成的油水两相分离现象,在此基础上研究润湿性对真实储层岩心孔隙流体两相分离的影响,并实现全程动态可视化。研究表明,用LB方法进行储层岩石油水两相分离简便易行、形象直观,是研究流体分离规律和特点的重要评价方法。
2024-10-24 15:53:58 325KB 自然科学 论文
1
终于将MYSQL数据库当中的数据转换成Sqlite数据库文件,格式为.db格式的, 适合android本地查询,包含provinces、cities、areas、zipcode四张相互关联的表格,有需要的可以下载。
2024-10-24 14:50:43 98KB android
1