中国省事县级矢量地图与南海诸岛十段线底图,shp格式,可用ARCGIS等软件打开
2025-12-29 10:07:57 108.93MB 数据集 arcgis
1
1.原始数据集为已经公开的DroneRFa,博主进行部分挑选和处理并生成了时频图,进行标注 2.四种信号的遥控和图传,每种信号还标注了WIFI和Bluetooth DJI_MATRICE_600_Pro DJI_Mavic_3 DJI_Mavic_Pro DJI_Mini_2 无人机技术近年来得到快速发展,其在多个行业中的应用愈发广泛,其中无人机信号处理与识别成为技术发展的重要一环。在众多信号处理技术中,YOLO格式因其高效的检测速度和高准确率而备受青睐。本数据集针对无人机信号进行深入研究,选取了四种无人机型号的信号数据集,并将其转化为YOLO格式进行标注。 数据集的来源是DroneRFa,这是一个已经公开的无人机遥控信号数据集。该数据集包含了丰富的无人机遥控和图传信号,涵盖了多种无人机品牌和型号。为了满足研究和开发的需要,博主对DroneRFa进行了精选,并对选出的部分数据进行了进一步的处理。处理步骤包括生成时频图,这种图像能够有效展示信号的时域和频域特性,为信号的分析和识别提供了重要依据。 数据集中的四种信号分别来自DJI公司生产的不同型号的无人机,包括MATRICE 600 Pro、Mavic 3、Mavic Pro和Mini 2。这些无人机在消费级和专业级市场中都占有重要地位,其遥控信号和图传信号的特征具有较高的代表性。在本数据集中,不仅对这些无人机的信号进行了详细的标注,还特别标注了WIFI和Bluetooth信号。这种信号区分具有重要意义,因为WIFI和Bluetooth在无人机信号传输中也扮演着重要角色。 数据集的组织形式为YOLO格式,这是一种广泛应用于实时对象检测的深度学习模型的标注格式。YOLO模型将图像分割成一个个网格,并预测每个网格中的对象及其边界框。YOLO格式的数据集通过标注每个对象的类别以及它们在图像中的位置(x, y, width, height坐标),为模型提供了训练所需的数据。这种格式由于其简洁性和高效性,在训练实时系统,如无人机信号检测等方面表现出色。 在处理和标注无人机信号数据集时,研究者需要具备专业的知识背景,包括信号处理、图像处理、机器学习等领域。此外,还需要对无人机的工作原理、不同型号无人机的遥控与图传机制有所了解。这些知识保证了数据集的高质量和高可用性。 总结而言,这四种无人机信号数据集为研究和开发提供了宝贵的基础数据,为无人机的信号识别、监控以及安全等方面的改进提供了支持。数据集的时频图标注和YOLO格式转换,使得数据集不仅可用于图像识别任务,还能够用于频谱分析、无线通信等领域的研究,对于无人机技术的发展具有深远的影响。
2025-12-29 10:07:50 887.3MB
1
白细胞、红细胞和血小板是人体血液中至关重要的细胞成分,它们各自承担着不同的生理功能。白细胞是免疫系统的重要组成部分,负责防御病原体入侵;红细胞的主要功能是携带氧气输送到全身的组织和器官;血小板则对于血液凝固和止血起着关键作用。细胞图像数据集对于医疗诊断和生命科学研究具有极高的价值,尤其是在机器学习和人工智能领域中,图像识别技术的发展。 本数据集包含了5000张血液细胞的标准图像,这些图像被精心标注,可用于科研工作或是作为模型验证识别的数据源。对于图像识别模型的训练而言,一个丰富和标准的数据集是至关重要的。本数据集涉及的三类细胞分别对应不同的生理病理情况,例如白细胞的异常增多或减少可能与感染或自身免疫疾病有关,红细胞的数量和形态异常可能提示贫血或其他血液疾病,血小板数量的减少可能导致出血倾向增加。 在科研领域,该数据集可用于开发新的血液细胞识别算法,提高自动化血细胞分析的准确性和效率,同时也能够辅助医学专业人士在临床诊断中做出更快速和准确的判断。此外,利用此数据集训练的模型还可以用于生物信息学的基础研究,比如分析细胞的形态变化、识别不同发育阶段的细胞以及研究疾病对细胞形态的影响。 数据集中的每个图像中包含数量不等的白细胞、红细胞和血小板,这种多样性使得数据集更加真实和具有代表性,可以更好地模拟现实世界中的情况,从而提高模型的泛化能力。每张图像都经过了高质量的采集和标注,确保了数据的质量和可重复使用性。 数据集通常以文件的形式提供,本数据集中的文件包括:data.yaml文件,可能包含了数据集的详细信息,比如图像的尺寸、通道数、类别标签等;labels文件夹,可能包含图像对应的各种标注信息,如细胞的位置、数量等;images文件夹,则存放着所有的血液细胞图像。这样的结构便于管理和使用数据集,使得研究人员可以方便地获取和处理数据。 本数据集不仅是机器学习和人工智能领域在血液细胞识别领域中的重要资源,也为医疗诊断和生命科学研究提供了新的工具和方法。它能够帮助研究人员构建、验证和优化识别模型,从而推动医学成像技术和疾病诊断技术的发展。
2025-12-28 21:42:30 122.36MB 数据集 模型训练
1
数据集介绍 背景非常干净小巧的目标检测数据集。 里面仅仅包含螺丝和螺母两种类别的目标,背景为干净的培养皿。图片数量约420张,train.txt 文件描述每个图片中的目标,label_list 文件描述类别 另附一个验证集合,有10张图片,eval.txt 描述图片中目标,格式和 train.txt 相同 在现代计算机视觉领域中,目标检测是一项关键技术,它涉及到识别和定位图像中的一个或多个物体。目标检测数据集的建立对于训练和测试目标检测算法至关重要,因为它提供了算法需要学习的样本。本次介绍的“螺丝螺母目标检测数据集”便是在此背景下构建的专用数据集。 该数据集专注于两种常见的机械元件——螺丝和螺母,它们在工业自动化、精密制造等领域有着广泛的应用。由于这些元件体积小巧,外观特征明显,使得它们成为研究背景杂乱、目标尺寸小、类别有限情况下的理想选择。数据集的背景被设计为干净的培养皿,这不仅降低了背景噪声对目标检测算法的影响,而且提供了清晰的对比,使得目标边缘更容易被检测和识别。 数据集包含了约420张训练图片,这些图片被详细标注,每张图片中螺丝和螺母的位置信息都被记录在train.txt文件中。每一条记录通常包含目标的类别、位置(通常以边界框的形式)等信息。这些信息是目标检测算法在训练过程中必须依赖的,它们帮助算法学习如何从图像中区分螺丝和螺母,并准确地定位它们的位置。 除此之外,数据集还额外提供了10张图片作为验证集,这些图片被记录在eval.txt中,格式与train.txt一致。验证集的作用是测试训练好的模型在未知数据上的性能。通过使用验证集,研究者可以评估目标检测模型的泛化能力,并进行进一步的调优。 数据集的设计者还提供了label_list文件,它详细描述了数据集中的所有类别信息。在本数据集中,类别信息很简单,只有螺丝和螺母两种,但在更复杂的现实世界应用场景中,可能会涉及到多种不同形状、尺寸和材质的物体。label_list文件有助于算法在处理数据时准确地识别和分类目标。 将这样一个专门设计的数据集用于机器学习和计算机视觉的研究,不仅可以提升检测螺丝和螺母的能力,也为在复杂背景下实现精准检测提供了实验基础。通过实际应用,我们能够看到目标检测算法在处理具有相似特征的不同目标时的性能差异,这对于算法的改进和创新具有重要意义。 此外,数据集的规模虽然相对较小,但它为研究者提供了一个很好的起点。在初步的实验和算法验证之后,研究者可以扩展更多的数据,比如通过数据增强或者收集更多种类的螺丝和螺母图片,来提高模型的鲁棒性和实用性。 这个螺丝螺母目标检测数据集为特定场景下的目标检测研究提供了宝贵的资源。它不仅适用于教育和研究目的,也为开发和评估目标检测算法提供了理想的平台。通过这种专业化的数据集,研究人员可以更深入地探索目标检测技术在工业检测、质量控制以及自动化装配等领域的应用潜力。
2025-12-28 20:26:27 82.67MB 数据集
1
妊娠期糖尿病(Gestational Diabetes Mellitus,GDM)数据集是一个专注于研究妊娠期糖尿病的医学数据集,旨在帮助研究人员和医学专家更好地理解该疾病的发病机制、风险因素以及预测模型。该数据集通常包含孕妇的临床特征、生物标志物、生活方式信息以及妊娠期糖尿病的诊断结果等。该数据集可能来源于医院的临床研究项目,例如伦敦国王学院医院对单胎妊娠女性进行的前瞻性不良产科结局筛查研究。研究对象通常是处于妊娠中晚期的孕妇,数据收集时间可能集中在孕早期至孕晚期的不同阶段。数据集的构建旨在通过分析孕妇的生理和生化指标,预测妊娠期糖尿病的发生风险,从而为早期干预提供依据。该数据集可用于多种研究目的: 风险预测模型开发:通过机器学习算法,利用数据集中的特征变量建立预测模型,提前识别高风险孕妇。 生物标志物研究:分析哪些生物标志物与妊娠期糖尿病的发生密切相关。 发病机制探索:通过基因表达分析等手段,研究妊娠期糖尿病的潜在分子机制。 临床干预研究:为制定个性化治疗方案提供数据支持,改善母婴健康预后。 该数据集为研究妊娠期糖尿病提供了丰富的数据资源,有助于推动相关领域的研究进展。
2025-12-28 18:17:19 6KB 机器学习 预测模型
1
在当前信息化和智能化的时代背景下,人工智能技术尤其在智能监控领域有着广泛的应用。人体摔倒姿态检测作为智能监控中的一项重要内容,其重要性随着人口老龄化问题的日益突出而愈发明显。这项技术的应用场景非常广泛,比如在老年人护理、公共安全监控以及医疗健康监护等多个领域中,都有着不可替代的作用。 本数据集以"人体摔倒姿态检测数据集"为标题,主要针对人体摔倒姿态的检测和识别进行数据的整理和分类。数据集中的内容经过精心设计和收集,覆盖了多种摔倒姿态和日常动作,为开发者提供了丰富的素材用于训练和测试摔倒检测模型。 摔倒姿态的检测算法一般基于计算机视觉和机器学习技术,通过分析人体形态和运动轨迹来判断是否发生了摔倒事件。高质量的数据集是开发和训练此类算法的基础。本数据集将为研究人员提供必要的训练数据,有助于提高摔倒检测系统的准确性和可靠性。 数据集的收集通常涉及到复杂的场景,为了尽可能模拟真实环境下的摔倒情况,数据采集工作往往需要在多种环境中进行,包括不同的光照条件、背景和人群密度。收集到的数据将包含视频文件和图像文件,它们经过标注,标注信息包括人体的姿态、动作以及可能的摔倒情况等。 数据集的使用场景也十分广泛,不仅可以用于摔倒检测模型的训练和验证,还可以被应用于人体动作识别、姿态估计以及行为分析等多个领域。由于数据集往往具有较高的实用价值和研究价值,因此也常常成为学术界和工业界合作的媒介,推动相关技术的发展和应用。 对于初学者而言,本数据集可以作为学习计算机视觉和机器学习基础知识的素材,对于专业人士而言,则是进行算法优化和新算法研发的重要工具。随着人工智能技术的不断进步,相信未来人体摔倒姿态检测技术将变得更加精准和智能化,为人类的安全和健康保驾护航。 与此同时,数据集的设计和应用也面临一些挑战,比如数据隐私和伦理问题、数据的多样性和代表性问题等。这些都是在设计和使用数据集过程中需要认真考虑和处理的问题。 本数据集的发布,对于推动摔倒姿态检测技术的研究和应用具有重要的意义,有望在未来改善和提升人们的生活质量,并对智能监控和人工智能技术的发展产生积极的推动作用。
2025-12-26 16:46:38 368.37MB 数据集
1
数据集介绍 相关项目——1:https://aistudio.baidu.com/aistudio/projectdetail/2286726 相关项目——2:https://aistudio.baidu.com/aistudio/projectdetail/2307043 其中训练集样本约59万(欺诈占3.5%),测试集样本约50万。 数据主要分为2类,交易数据transaction和identity数据。 字段表 交易表 Field Description TransactionDT:来自给定参考日期时间的时间增量(不是实际时间戳) TransactionAMT:以美元为单位的交易支付金额 ProductCD:产品代码,每笔交易的产品 card1 - card6:支付卡信息,如卡类型、卡类别、发卡行、国家等 addr:地址 dist:距离 P_ 和 (R__) emaildomain:购买者和收件人的电子邮件域 C1-C14:计数,如发现有多少地址与支付卡关联等,实 D1-D15:timedelta,例如上次交易之间的天数等 M1-M9:匹配,如卡上的姓名和地址等 Vxxx:Vesta 设计了丰富的功能,包括排名、计数和其他实体关系 分类特征: ProductCD card1 - card6 addr1, addr2 P_emaildomain R_emaildomain M1 - M9 身份表 该表中的变量是身份信息——与交易相关的网络连接信息(IP、ISP、代理等)和数字签名(UA/浏览器/操作系统/版本等)。 它们由 Vesta 的欺诈保护系统和数字安全合作伙伴收集。 (字段名称被屏蔽,不提供成对字典用于隐私保护和合同协议) 分类特征: DeviceType DeviceInfo id_12 - id_38
2025-12-26 16:45:54 106.97MB 数据集
1
跌倒检测数据集是专门用于开发和测试跌倒检测算法和系统的重要资源。在老龄化社会的背景下,跌倒是老年人常见的意外伤害之一,因此开发能够及时准确检测跌倒事件的智能系统显得尤为重要。跌倒检测数据集通常包含了一系列记录人体跌倒行为的视频或图像数据,以及对应的标注信息。 在实际应用中,跌倒检测系统主要依赖于传感器数据,如加速度计、陀螺仪等,来分析个体的运动状态。数据集中的图像或视频文件能够为算法提供视觉信息,帮助算法理解人体姿态和动作的变化,进而判断是否存在跌倒行为。此外,数据集还可能包含各种环境下的跌倒场景,以提高算法的泛化能力。 具体到“跌倒检测数据集-zip文件”,这个数据集可能是经过压缩处理,便于网络传输和存储。其中,“Annotations”文件夹中可能包含有标注信息,即对图像或视频中跌倒行为的详细描述,例如跌倒发生的起始时间、结束时间、跌倒方向等关键信息。这些信息对于训练机器学习模型来说至关重要,因为它们为模型提供了判断跌倒行为的依据。 而“images”文件夹中则可能存放了用于分析和训练的图像或视频片段。这些内容可能是从不同的角度、不同光照条件下拍摄的,以便覆盖尽可能多的真实世界场景。图像的多样性和数量直接影响到跌倒检测系统的准确度和鲁棒性。数据集的构建往往需要大量的数据采集工作,以及对隐私的保护措施。 由于压缩包内存在一个“空”文件夹,这可能是数据集制作者留下的临时文件夹,也可能是下载时的错误。不过,对于使用该数据集的研究人员来说,应该关注的是“Annotations”和“images”两个文件夹中的内容。 “跌倒检测数据集-zip文件”中的数据可用于支持多种研究领域,如计算机视觉、模式识别、机器学习等。研究者们可以利用这些数据训练和验证新的算法,改善现有算法的性能,甚至可能开发出新的检测机制。此外,这些数据还能够帮助研究人员进行比较分析,从而选择最适合特定应用场景的跌倒检测技术。 对于普通用户而言,这样的数据集可以提供了解和学习跌倒检测技术的途径,也有助于他们认识跌倒对个体健康的影响,从而提高对老年人跌倒风险的关注和预防意识。此外,随着技术的进一步发展,未来家庭和社区中的跌倒检测设备可能会变得更加普及和智能化,能够提供及时的救援和帮助。 “跌倒检测数据集-zip文件”不仅是一个研究工具,也是一个关注老年人健康、提高公共安全的有力支持。随着技术的不断进步和数据集的不断完善,未来跌倒检测技术有望达到更高的准确度和普及率,为社会提供更加全面和人性化的保护。
2025-12-26 16:36:39 65.27MB 数据集
1
CIC IoT Dataset 2023是由加拿大网络安全研究所提供的一个数据集,旨在促进物联网(IoT)环境中大规模攻击的安全分析应用程序的开发。该数据集包含33种攻击,分为7类,包括DDoS、DoS、侦察、基于Web的攻击、暴力破解、欺骗和Mirai。 TON_IoT数据集是一种新型的物联网(IoT)网络测试平台架构,可以用来评估人工智能(AI)安全应用程序。该平台采用了NSX vCloud NFV来支持软件定义网络(SDN)、网络功能虚拟化(NFV)和服务编排(SO),它包含了从遥测数据集、Windows和Linux基础数据集以及网络流量数据集收集的异构数据源。 UNSW-NB15 Dataset是由澳大利亚新南威尔士大学堪培拉分校网络范围实验室的IXIA PerfectStorm工具创建的原始网络数据包,用于生成现代正常活动和合成当代攻击行为的混合体。该数据集包含九种类型的攻击,包括Fuzzers、Analysis、Backdoors、DoS、Exploits、Generic、Reconnaissance、Shellcode和Worms。总共49个带有类标签的特征。
2025-12-26 11:11:07 1.44MB 数据集 网络 网络
1
可直接查看资源详情中信息----- 【分类数据集】水果和蔬菜图像识别数据集3115张36种.7z 【图片分类数据集】腰果成熟度分类数据集900张3类.zip 【目标检测数据集】香蕉检测数据集3550张VOC+YOLO张.zip 【目标检测】小辣椒小彩椒检测数据集2292张3类别.7z 【目标检测】香蕉检测数据集1114张VOC+YOLO格式.zip 【目标检测】香蕉数据集2240张VOC+YOLO格式.7z 【目标检测】西蓝花数据集1930张VOC+YOLO格式.7z 【目标检测】西瓜检测数据集330张VOC+YOLO格式.zip 【分类数据集】蔬菜水果分类数据集18000张26类别.zip 【分类数据集】蔬菜水果分类数据集2万张30类别.zip 【目标检测】柿子检测数据集693张VOC+YOLO格式.zip 【目标检测】苹果香蕉橙子菠萝葡萄西瓜水果检测识别数据集VOC+YOLO格式8475张6类别.zip 【目标检测】苹果数据集1586张VOC+YOLO格式.7z 【目标检测】猕猴桃数据集1700张VOC+YOLO(都是不同角度摆拍图标注).zip 【目标检测】芒果检测数据集897
2025-12-25 20:37:38 1KB
1