样本图参考:blog.csdn.net/2403_88102872/article/details/143389435 重要说明:文件太大放服务器了,请先到资源详情查看然后下载 数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):2792 标注数量(xml文件个数):2792 标注数量(txt文件个数):2792 标注类别数:3 标注类别名称:["decaycavity","earlydecay","healthytooth"] 三种主要类别,分别是“decaycavity”(龋齿)、“earlydecay”(早期龋齿)和“healthytooth”(健康牙齿)
2025-11-24 10:30:38 407B 数据集
1
在深度学习和计算机视觉领域中,数据集的构建是实现高效准确目标检测算法的基础。智慧城市作为当前城市发展的重要方向,交通违规行为的自动检测技术可以极大提升城市管理的效率和安全水平。数据集“智慧城市-交通违规行为检测数据集VOC+YOLO格式4662张7类别.zip”为该技术研究提供了宝贵的资源。 该数据集包含4662张图片,这些图片覆盖了多种交通违规行为,每张图片都对应着一个或多个特定的标签。数据集采用VOC(Visual Object Classes)和YOLO(You Only Look Once)两种格式,旨在方便研究人员使用不同框架进行目标检测实验。VOC格式是一种较为通用的标注格式,包含了目标的位置框(bounding box)信息和类别信息,而YOLO格式则是专为YOLO系列目标检测算法优化的标注格式,它将图像划分为一个个格子,每个格子负责检测目标所在的区域。 7个类别涵盖了常见的交通违规行为,比如不遵守交通信号、非法停车、逆行、不使用安全带、打电话、超载以及交通事故现场。每张图片中的违规行为都经过了精确标注,这样的细节对于训练和测试目标检测模型至关重要,因为它直接关系到模型在实际应用中的表现。准确的标注可以减少模型学习过程中的噪声,提高模型的泛化能力。 数据集的构建者可能采用了人工标注的方式,确保了标注的准确性。人工标注是目前最可靠的方式,尤其适合于复杂场景和多目标的情况。在实际操作中,标注者需要根据交通规则和实际情况,精确地标出违规行为的位置,并给出相应的类别标签。这个过程不仅耗时,而且需要具备一定的专业知识。 此外,数据集的规模也是一个重要考量因素。4662张图片对于训练一个健壮的目标检测模型而言是一个相对合理的数据量。更多的数据意味着模型能见到更多的场景变化,从而学习到更加鲁棒的特征。同时,数据集包含7个类别,这既是对模型分类能力的考验,也是对实际应用中违规行为多样性的反映。 在实际应用中,该数据集可以帮助开发出可以自动识别和记录交通违规行为的系统。例如,交通监控摄像头可以使用这种技术来自动检测并记录违规车辆,然后将相关信息发送给交通管理部门,从而提高交通违规处理的效率。 未来,随着智慧城市的发展,对于这类技术的需求会不断增长。因此,数据集的更新和扩充也显得尤为重要。随着更多新型违规行为的出现,数据集也需要不断加入新的类别和更多样化的场景图片,以保持其先进性和实用性。 数据集“智慧城市-交通违规行为检测数据集VOC+YOLO格式4662张7类别.zip”提供了一个高质量的图像和标注资源,对于推动交通违规行为检测技术的发展具有重要意义。通过对该数据集的深入研究和应用,可以有效提升交通管理的智能化水平,为建设更加安全和有序的智慧城市提供技术支持。
2025-11-23 15:38:23 451B
1
根据提供的文件信息,我们可以了解到这份数据集主要聚焦于使用YOLOv8算法进行目标检测,特别关注三个特定类别的对象:安全帽、头部和人体。YOLOv8作为一种先进的目标检测算法,其核心在于能够实时地在图像中准确识别和定位多个对象。YOLO(You Only Look Once)系列算法因其高效性和准确性,被广泛应用于安防监控、自动驾驶、工业检测等领域。 安全帽检测在工作场所安全监控中至关重要。对于建筑工地、矿山等高风险工作环境,准确识别工人是否佩戴安全帽可以极大降低安全事故的发生率。数据集中的安全帽图片将用于训练模型,以识别出照片中哪些人佩戴了安全帽,哪些没有。 头部检测同样在多个场景中有广泛的应用,比如在人流量监控系统中,头部检测可以帮助系统跟踪和记录人员的数量和移动路径,从而进行人群密度分析、行为分析等。 人体检测的应用则更为广泛,从视频监控到增强现实,人体检测能力是许多智能系统不可或缺的功能。例如,在零售分析中,人体检测可以帮助商家统计进入店铺的顾客数量;在智能安防系统中,可以实现对特定区域内人的活动进行监控。 这份数据集包含了100张图片,每一幅图片都经过精心挑选和标注,以确保训练出的模型能够覆盖不同的场景和光照条件,提高模型的泛化能力和实用性。图片标注工作是数据集准备过程中极为重要的一环,需要对图片中的每个目标对象进行精确的边界框标注,标注的准确与否直接关系到训练出的模型的性能。 这份数据集的标签中仅包含“yolov8”,说明它是专门为YOLOv8算法量身定制的。这意味着这些图片将主要用于训练YOLOv8模型,以及评估该模型在上述三类目标检测任务中的表现。由于YOLOv8算法的实时性和高效性,可以预见这份数据集将能帮助开发者快速部署和优化在特定场景下的目标检测系统。 这份数据集的文件名称为“Hard Hat Sample.v1-raw.yolov8”,意味着它可能是关于安全帽检测的一个样例数据集,其中“Hard Hat”指代了安全帽,而“Sample”表明这只是一个样本或示范版本,用于展示整个数据集的结构和内容。文件扩展名“yolov8”则进一步强调了这份数据集的特定用途。这样的命名方式可以帮助用户快速识别数据集的用途,并且了解它是为了配合YOLOv8算法而设计的。 这份数据集的意义不仅仅在于它能够帮助研究者和开发者训练和验证目标检测模型,它还体现了当前计算机视觉领域对于安全生产和智能化管理的关注。随着技术的发展,人工智能在安全帽检测、头部检测和人体检测等方面的应用将越来越广泛,对于提高安全监控效率、减少事故发生和增强人机交互体验具有重要意义。
2025-11-23 14:56:26 3.52MB
1
在当代社会,随着人工智能技术的快速发展,机器视觉在工业检测和智能监控领域发挥着越来越重要的作用。图像分割作为机器视觉中的关键技术之一,对于自动化识别和分类图像中的对象和区域至关重要。尤其是在建筑物安全检测方面,能够准确地识别出砖块、地板和墙面裂缝,对于预防事故和维护建筑物的完整性具有重大意义。 本数据集是实验室自主研发并标注的,专注于裂缝识别的图像语义分割任务,其中包含了大量高质量的裂缝图像和对应的二值mask标签。语义分割是指将图像中每个像素划分到特定的类别,从而得到图像中每个对象的精确轮廓。在这个数据集中,每张图片都对应着一个二值mask,其中白色的像素点表示裂缝的存在,而黑色像素点则表示背景或其他非裂缝区域。通过这种标注方式,可以让计算机视觉模型更好地学习和识别裂缝的形状、大小和分布特征。 数据集的规模为9495张图片,这为机器学习模型提供了丰富的训练材料,从而可以提高模型对裂缝识别的准确性和泛化能力。由于标注质量高,数据集中的裂缝图像和二值mask标签高度一致,这有助于减少模型训练过程中的误差,提升模型的性能。数据集涵盖了红砖裂缝、地板裂缝和墙面裂缝三种不同类型,因此可以被广泛应用于多种场景,如桥梁、隧道、道路、房屋和其他基础设施的检查。 该数据集不仅适用于学术研究,比如博士毕业设计(毕设)、课程设计(课设),还可以被广泛应用于工业项目以及商业用途。对于学习和研究图像处理、计算机视觉、深度学习的学者和工程师来说,这是一份宝贵的资源。它可以帮助研究人员快速构建和验证裂缝识别模型,同时也为相关领域的商业应用提供了便利。 该数据集为计算机视觉领域提供了重要的基础资源,有助于推动裂缝检测技术的发展和创新,对于提高建筑物安全检测的自动化水平具有重要的实用价值。随着技术的进步,相信这些数据将会在智能城市建设、工业安全监控以及自动化灾害预防等领域发挥越来越大的作用。
2025-11-22 10:43:56 726MB 数据集
1
地级市资源型城市-原始名单
2025-11-21 16:42:15 376KB 数据集
1
在IT行业中,数据集是机器学习和深度学习领域不可或缺的一部分,它们用于训练和验证模型,以便让计算机系统学会识别特定模式或执行特定任务。在这个场景中,"快递单paddleocr 数据集" 是一个专门为识别快递单上的文字设计的数据集。PaddleOCR是一款由阿里云开发的高效、轻量级的OCR(Optical Character Recognition,光学字符识别)工具,它旨在帮助开发者实现快速的文字检测和识别功能。 我们来了解一下OCR技术。OCR是一种将图像中的文字转换为机器可读文本的技术,广泛应用于身份证、护照、发票、名片、书籍扫描等场景。在快递行业中,自动识别快递单上的收件人、寄件人信息、运单号等关键字段,可以大大提高物流处理的效率和准确性。 PaddleOCR项目基于PaddlePaddle,这是百度开源的深度学习框架,以其易用性和高性能而受到开发者喜爱。PaddleOCR提供了多种模型,包括基于DB(Directional Bi-GRU with Atrous Convolution)的文本检测模型和基于CRNN(Connectionist Temporal Classification)的文本识别模型,这些模型经过优化,能够在资源有限的设备上运行,满足实时性和准确性的需求。 回到我们的数据集,"ocr_lable" 文件很可能是标注了快递单图像中每个字符位置和内容的文件,这些标注是训练OCR模型的关键。通常,这样的数据集包含两个部分:图像文件(如.jpg或.png)和对应的标注文件(如.txt或.json)。图像文件包含了实际的快递单图像,而标注文件则列出了每个文字的位置坐标(bounding box)以及对应的字符内容。这种格式使得机器学习算法能够理解每个文字在图像中的位置,并学习如何正确地识别它们。 在训练过程中,数据集会被分为训练集、验证集和测试集,训练集用于训练模型,验证集用于调整模型参数,测试集则用来评估模型的最终性能。对于快递单数据集,可能需要特别关注字体的多样性、文字的方向(竖直或水平)、文字大小变化以及背景噪声等因素,因为这些都是实际快递单上常见的特征。 训练完成后,我们可以使用PaddleOCR的推理接口将模型部署到实际应用中,比如在物流系统的图像处理模块,对实时拍摄的快递单进行文字识别。这不仅能够提高操作速度,还可以减少人为错误,提高整个物流系统的自动化程度。 "快递单paddleocr 数据集" 是为了训练和优化OCR模型,特别是针对快递单场景的识别需求。通过使用这个数据集,开发者可以构建出能在复杂背景和多样字体下准确识别快递单信息的高效模型,从而提升物流行业的信息化水平。
2025-11-21 15:16:16 33.35MB 数据集
1
2025年深圳市公交数据集是一个集合了深圳市公共交通系统详细信息的数据资源,涵盖了该年度内深圳市公交路线、站点以及可能的网络资源信息。具体到本数据集,它包含了三个主要的文件,分别是bus_routes_2025.csv、bus_stations_2025.csv和两个网络资源文件web2024、web2025。 文件bus_routes_2025.csv记录了深圳市所有公交线路的详细信息,其中可能包含了每条线路的编号、所属公交公司、起始站点、终点站点、途经站点、线路总长、发车时间、运行频率以及票价等。这些信息对于了解深圳市公交系统的覆盖范围、运营模式和市民的出行习惯至关重要。 文件bus_stations_2025.csv则详细列出了深圳市各个公交站点的具体信息,可能包括站点名称、位置坐标、周边环境描述以及连接的公交线路等。通过这些数据,我们可以分析公交站点的分布情况,判断站点之间的距离是否合理,是否存在某些地区公交站点覆盖不足的问题。 至于web2024和web2025,虽然未提供具体信息,但我们可以合理推测,这两个文件可能是与深圳市公交数据集相关的网络资源或网页存档。它们可能是公交线路的实时更新信息、站点的实时监控数据、或是运营公司的官方公告等,对于研究者来说,这些网络资源能够提供数据集更新或实时变化的参考,尤其在分析公交系统的时效性和动态性时显得尤为重要。 综合来看,这份数据集对研究深圳市公共交通发展、优化公交线路、规划城市交通网络、以及为市民提供更好的出行建议都有着重要的价值。同时,它还可以为政府和企业提供决策支持,帮助他们在城市规划和交通管理方面做出更为科学的决策。此外,对地理信息系统(GIS)研究人员、城市规划师以及关注城市交通发展的学者来说,本数据集都是一个不可多得的研究材料。 2025年深圳市公交数据集通过详实的公交线路和站点信息,以及相关的网络资源文件,为公众和研究者提供了一个全面了解和分析深圳市公交系统的基础数据平台。通过对这些数据的深入分析,可以揭示城市交通的运行规律,为未来交通规划和管理提供科学依据,从而提高公共交通效率,促进城市可持续发展。
2025-11-21 12:11:26 20.33MB 数据集
1
在海上船舶智能检测的精准监测与安全管控升级进程中,对船舶类型及航行状态的高效识别与动态追踪是提升航运监管效率、强化海上安全防护的核心要素。基于海事卫星与舰载雷达采集的实时数据解析并标注构建的多维度船舶识别数据集,能为 YOLO 等前沿目标检测模型提供贴合实际航海场景的训练样本,助力模型更精准识别复杂海况中不同类别的船舶 —— 尤其小型渔船(体积小巧易与漂浮物混淆)、大型货轮(载货状态导致轮廓变化)、特种作业船(设备搭载造成形态特异)、非船舶干扰(海上平台易引发误判),其识别需兼顾复杂环境(如风浪干扰、雷达杂波)与多样场景(如近岸繁忙水域、远海开阔航线)的识别精度,为船舶的航线规划、碰撞预警提供数据支撑,推动海事管理从人工监控向智能研判转变,实现监管效能与航行安全的提升。
2025-11-20 23:49:38 219.89MB 数据集
1
CardiacUS-Septum 是一个专注于心脏超声图像中室间隔(Interventricular Septum)分割的公开数据集,包含 3,092张 高质量心脏超声切面图像及对应的LabelMe格式标注文件。本数据集旨在促进医学图像分割算法的研究,特别是心脏结构的自动识别与分析。 关键特性 数据量:3,092张心脏超声图像(.jpg格式) 标注格式:标准LabelMe JSON格式(兼容主流分割工具) 标注类别:单类别(室间隔,标签名:IVS) 图像来源:多中心采集(已脱敏处理,去除患者隐私信息) 适用场景:医学图像分割、超声影像分析、AI辅助诊断
2025-11-20 14:51:53 48.73MB 数据集
1
内容概要:本文档汇总了电力行业的多个数据集,涵盖了输电线、变电站、光伏设备等多个电力设施的检测数据。这些数据集主要用于电力设施的缺陷检测、状态监测、故障识别等任务,涉及输电线导线散股、螺栓销钉缺失、绝缘子缺陷、光伏板异常等多种问题。数据集格式多为VOC和YOLO,部分为labelme格式,适用于目标检测、图像分割等任务。此外,还包括电力负荷预测相关的CSV和XLSX文件,以及输电线路涉鸟故障、高空作业安全带检测等特殊场景的数据集。数据集数量众多,图片总数超过数十万张,涵盖多个类别,部分数据集还包含了标注信息和分类文件。 适合人群:电力行业研究人员、数据科学家、机器学习工程师、图像处理专家等。 使用场景及目标:①用于训练和评估电力设施检测模型,提升电力系统的运行维护效率;②支持电力设备的状态监测和故障预测,保障电网安全稳定运行;③为电力行业的智能化巡检、自动化检测提供数据支持,减少人工巡检的工作量和风险。 其他说明:所有数据集均可从GitHub链接下载,部分数据集经过增强处理,适用于深度学习模型的训练。数据集的多样性和丰富性为电力行业的研究和应用提供了坚实的基础。
2025-11-20 11:41:54 7KB 数据集
1