在当前信息化和智能化的时代背景下,人工智能技术尤其在智能监控领域有着广泛的应用。人体摔倒姿态检测作为智能监控中的一项重要内容,其重要性随着人口老龄化问题的日益突出而愈发明显。这项技术的应用场景非常广泛,比如在老年人护理、公共安全监控以及医疗健康监护等多个领域中,都有着不可替代的作用。 本数据集以"人体摔倒姿态检测数据集"为标题,主要针对人体摔倒姿态的检测和识别进行数据的整理和分类。数据集中的内容经过精心设计和收集,覆盖了多种摔倒姿态和日常动作,为开发者提供了丰富的素材用于训练和测试摔倒检测模型。 摔倒姿态的检测算法一般基于计算机视觉和机器学习技术,通过分析人体形态和运动轨迹来判断是否发生了摔倒事件。高质量的数据集是开发和训练此类算法的基础。本数据集将为研究人员提供必要的训练数据,有助于提高摔倒检测系统的准确性和可靠性。 数据集的收集通常涉及到复杂的场景,为了尽可能模拟真实环境下的摔倒情况,数据采集工作往往需要在多种环境中进行,包括不同的光照条件、背景和人群密度。收集到的数据将包含视频文件和图像文件,它们经过标注,标注信息包括人体的姿态、动作以及可能的摔倒情况等。 数据集的使用场景也十分广泛,不仅可以用于摔倒检测模型的训练和验证,还可以被应用于人体动作识别、姿态估计以及行为分析等多个领域。由于数据集往往具有较高的实用价值和研究价值,因此也常常成为学术界和工业界合作的媒介,推动相关技术的发展和应用。 对于初学者而言,本数据集可以作为学习计算机视觉和机器学习基础知识的素材,对于专业人士而言,则是进行算法优化和新算法研发的重要工具。随着人工智能技术的不断进步,相信未来人体摔倒姿态检测技术将变得更加精准和智能化,为人类的安全和健康保驾护航。 与此同时,数据集的设计和应用也面临一些挑战,比如数据隐私和伦理问题、数据的多样性和代表性问题等。这些都是在设计和使用数据集过程中需要认真考虑和处理的问题。 本数据集的发布,对于推动摔倒姿态检测技术的研究和应用具有重要的意义,有望在未来改善和提升人们的生活质量,并对智能监控和人工智能技术的发展产生积极的推动作用。
2025-12-26 16:46:38 368.37MB 数据集
1
数据集介绍 相关项目——1:https://aistudio.baidu.com/aistudio/projectdetail/2286726 相关项目——2:https://aistudio.baidu.com/aistudio/projectdetail/2307043 其中训练集样本约59万(欺诈占3.5%),测试集样本约50万。 数据主要分为2类,交易数据transaction和identity数据。 字段表 交易表 Field Description TransactionDT:来自给定参考日期时间的时间增量(不是实际时间戳) TransactionAMT:以美元为单位的交易支付金额 ProductCD:产品代码,每笔交易的产品 card1 - card6:支付卡信息,如卡类型、卡类别、发卡行、国家等 addr:地址 dist:距离 P_ 和 (R__) emaildomain:购买者和收件人的电子邮件域 C1-C14:计数,如发现有多少地址与支付卡关联等,实 D1-D15:timedelta,例如上次交易之间的天数等 M1-M9:匹配,如卡上的姓名和地址等 Vxxx:Vesta 设计了丰富的功能,包括排名、计数和其他实体关系 分类特征: ProductCD card1 - card6 addr1, addr2 P_emaildomain R_emaildomain M1 - M9 身份表 该表中的变量是身份信息——与交易相关的网络连接信息(IP、ISP、代理等)和数字签名(UA/浏览器/操作系统/版本等)。 它们由 Vesta 的欺诈保护系统和数字安全合作伙伴收集。 (字段名称被屏蔽,不提供成对字典用于隐私保护和合同协议) 分类特征: DeviceType DeviceInfo id_12 - id_38
2025-12-26 16:45:54 106.97MB 数据集
1
跌倒检测数据集是专门用于开发和测试跌倒检测算法和系统的重要资源。在老龄化社会的背景下,跌倒是老年人常见的意外伤害之一,因此开发能够及时准确检测跌倒事件的智能系统显得尤为重要。跌倒检测数据集通常包含了一系列记录人体跌倒行为的视频或图像数据,以及对应的标注信息。 在实际应用中,跌倒检测系统主要依赖于传感器数据,如加速度计、陀螺仪等,来分析个体的运动状态。数据集中的图像或视频文件能够为算法提供视觉信息,帮助算法理解人体姿态和动作的变化,进而判断是否存在跌倒行为。此外,数据集还可能包含各种环境下的跌倒场景,以提高算法的泛化能力。 具体到“跌倒检测数据集-zip文件”,这个数据集可能是经过压缩处理,便于网络传输和存储。其中,“Annotations”文件夹中可能包含有标注信息,即对图像或视频中跌倒行为的详细描述,例如跌倒发生的起始时间、结束时间、跌倒方向等关键信息。这些信息对于训练机器学习模型来说至关重要,因为它们为模型提供了判断跌倒行为的依据。 而“images”文件夹中则可能存放了用于分析和训练的图像或视频片段。这些内容可能是从不同的角度、不同光照条件下拍摄的,以便覆盖尽可能多的真实世界场景。图像的多样性和数量直接影响到跌倒检测系统的准确度和鲁棒性。数据集的构建往往需要大量的数据采集工作,以及对隐私的保护措施。 由于压缩包内存在一个“空”文件夹,这可能是数据集制作者留下的临时文件夹,也可能是下载时的错误。不过,对于使用该数据集的研究人员来说,应该关注的是“Annotations”和“images”两个文件夹中的内容。 “跌倒检测数据集-zip文件”中的数据可用于支持多种研究领域,如计算机视觉、模式识别、机器学习等。研究者们可以利用这些数据训练和验证新的算法,改善现有算法的性能,甚至可能开发出新的检测机制。此外,这些数据还能够帮助研究人员进行比较分析,从而选择最适合特定应用场景的跌倒检测技术。 对于普通用户而言,这样的数据集可以提供了解和学习跌倒检测技术的途径,也有助于他们认识跌倒对个体健康的影响,从而提高对老年人跌倒风险的关注和预防意识。此外,随着技术的进一步发展,未来家庭和社区中的跌倒检测设备可能会变得更加普及和智能化,能够提供及时的救援和帮助。 “跌倒检测数据集-zip文件”不仅是一个研究工具,也是一个关注老年人健康、提高公共安全的有力支持。随着技术的不断进步和数据集的不断完善,未来跌倒检测技术有望达到更高的准确度和普及率,为社会提供更加全面和人性化的保护。
2025-12-26 16:36:39 65.27MB 数据集
1
CIC IoT Dataset 2023是由加拿大网络安全研究所提供的一个数据集,旨在促进物联网(IoT)环境中大规模攻击的安全分析应用程序的开发。该数据集包含33种攻击,分为7类,包括DDoS、DoS、侦察、基于Web的攻击、暴力破解、欺骗和Mirai。 TON_IoT数据集是一种新型的物联网(IoT)网络测试平台架构,可以用来评估人工智能(AI)安全应用程序。该平台采用了NSX vCloud NFV来支持软件定义网络(SDN)、网络功能虚拟化(NFV)和服务编排(SO),它包含了从遥测数据集、Windows和Linux基础数据集以及网络流量数据集收集的异构数据源。 UNSW-NB15 Dataset是由澳大利亚新南威尔士大学堪培拉分校网络范围实验室的IXIA PerfectStorm工具创建的原始网络数据包,用于生成现代正常活动和合成当代攻击行为的混合体。该数据集包含九种类型的攻击,包括Fuzzers、Analysis、Backdoors、DoS、Exploits、Generic、Reconnaissance、Shellcode和Worms。总共49个带有类标签的特征。
2025-12-26 11:11:07 1.44MB 数据集 网络 网络
1
可直接查看资源详情中信息----- 【分类数据集】水果和蔬菜图像识别数据集3115张36种.7z 【图片分类数据集】腰果成熟度分类数据集900张3类.zip 【目标检测数据集】香蕉检测数据集3550张VOC+YOLO张.zip 【目标检测】小辣椒小彩椒检测数据集2292张3类别.7z 【目标检测】香蕉检测数据集1114张VOC+YOLO格式.zip 【目标检测】香蕉数据集2240张VOC+YOLO格式.7z 【目标检测】西蓝花数据集1930张VOC+YOLO格式.7z 【目标检测】西瓜检测数据集330张VOC+YOLO格式.zip 【分类数据集】蔬菜水果分类数据集18000张26类别.zip 【分类数据集】蔬菜水果分类数据集2万张30类别.zip 【目标检测】柿子检测数据集693张VOC+YOLO格式.zip 【目标检测】苹果香蕉橙子菠萝葡萄西瓜水果检测识别数据集VOC+YOLO格式8475张6类别.zip 【目标检测】苹果数据集1586张VOC+YOLO格式.7z 【目标检测】猕猴桃数据集1700张VOC+YOLO(都是不同角度摆拍图标注).zip 【目标检测】芒果检测数据集897
2025-12-25 20:37:38 1KB
1
数据集是一个专注于加拿大水质污染监测的数据集合,它为研究者和环保工作者提供了丰富的信息,用于分析和评估加拿大水体的污染状况。该数据集涵盖了加拿大多个地区不同水体的水质监测数据。它可能包括以下关键信息: 地理位置:监测点所在的地理位置,如河流名称、湖泊名称或具体坐标,帮助用户了解数据的来源区域。 污染物指标:记录了多种污染物的浓度,例如化学需氧量(COD)、生化需氧量(BOD)、重金属含量(如铅、汞、镉等)、营养物质(如氮、磷)等,这些指标是评估水质污染程度的核心数据。 监测时间:数据记录的时间范围,可能包含多年的数据,用于分析水质的长期变化趋势。 其他相关信息:可能还包括水温、pH值、溶解氧等水质参数,这些参数对于全面评估水体健康状况至关重要。 这个数据集对于多个领域都具有重要的应用价值: 环境保护:环保部门可以利用这些数据制定针对性的污染防治策略,优先治理污染严重的区域,保护加拿大的水资源和生态环境。 科学研究:研究人员可以分析不同地区水质污染的成因和变化规律,探索污染源与水质之间的关系,为环境科学研究提供实证数据。 政策制定:政府部门可以依据数据集中的信息,评估现有环保政策的实施效果,调整和完善相关政策法规,推动可持续发展。 公众教育:通过公开这些数据,提高公众对水污染问题的认识,增强环保意识,促进全社会共同参与环境保护行动。 数据集的特点 全面性:涵盖了多种污染物和水质参数,提供了较为全面的水质信息。 时效性:包含多年的数据,能够反映水质的动态变化。 实用性:数据格式规范,易于处理和分析,适合多种研究和应用需求。
2025-12-24 10:22:23 207KB 机器学习 预测模型
1
MNIST数据集是机器学习领域一个非常经典的图像识别数据集,主要用于手写数字识别任务。这个数据集由Yann LeCun等人创建,包含了60,000个训练样本和10,000个测试样本,每个样本都是28x28像素的灰度图像,代表了一个0到9的手写数字。MNIST在深度学习和模式识别的研究中扮演了基础角色,是评估新算法性能的标准基准之一。 通常,MNIST数据集可以通过Python中的`sklearn`库的`fetch_mldata`函数轻松获取。然而,由于某些原因,如数据源的变化或者网络问题,可能无法直接使用该函数。在这种情况下,将MNIST数据集作为压缩文件(如"MNIST数据集.zip")提供,可以确保用户能够离线访问这些数据。 `mnist-original.mat`文件是MATLAB格式的数据文件,它包含了MNIST数据集的原始数据。MATLAB是一种广泛使用的数值计算软件,其`.mat`文件可以存储变量、矩阵和其他数据结构。在Python环境中,我们可以使用`scipy.io.loadmat`函数来读取这个文件。数据通常被组织成两个主要部分:'images'(图像数据)和'labels'(对应的标签)。'images'是一个三维数组,维度为(60000, 1, 28, 28)或(10000, 1, 28, 28)(训练集和测试集),表示60,000或10,000个样本,每个样本是一个1通道的28x28像素图像。'labels'则是一个一维数组,包含对应的数字标签(0到9)。 `README.txt`文件通常包含关于数据集的描述、使用方法或其他相关信息。在MNIST数据集中,这个文件可能包括数据集的来源、创建者信息、版权声明以及如何加载和处理数据的指南。 在Python中处理MNIST数据集,除了使用`scipy.io.loadmat`之外,还可以使用其他库,比如`tensorflow`、`keras`或`pandas`。例如,`tensorflow`和`keras`提供了内置的`load_data`函数,可以直接加载MNIST数据,并且预处理为适合神经网络模型的形式。如果选择手动处理,需要注意将图像数据归一化到0-1范围,以及将标签从一维向量转换为独热编码(one-hot encoding)。 MNIST数据集是机器学习初学者和研究人员的重要资源,通过理解和处理这个数据集,可以学习到图像分类的基本步骤,包括数据预处理、模型构建、训练和评估。而`fetch_mldata`函数的替代方案,如使用本地的压缩文件,确保了即使在网络不畅时也能进行相关研究和实验。
2025-12-23 21:36:25 10.92MB MNIST数据集 sklearn库
1
文件太大放服务器下载,请务必先到资源详情查看然后下载 样本图:blog.csdn.net/2403_88102872/article/details/143981057 数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):148 标注数量(xml文件个数):148 标注数量(txt文件个数):148 标注类别数:1 标注类别名称:["ice"] 每个类别标注的框数: ice 框数 = 214 总框数:214 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:暂无 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注
2025-12-23 18:03:26 407B 数据集
1
电力输电线覆冰检测技术是一项确保电力系统安全稳定运行的关键技术。在恶劣的天气条件下,输电线路上的覆冰可能会导致电线的机械强度下降,甚至引起输电线路断裂,造成大面积停电。为了有效地预防和处理这些问题,科研人员和工程师们开发了多种覆冰检测技术,并且这些技术不断向着自动化、智能化发展。 数据集是人工智能、特别是机器学习领域中不可或缺的部分。一个高质量、大规模的数据集对于训练有效的模型至关重要。这次提供的“电力场景输电线覆冰检测数据集VOC+YOLO格式1983张3类别.zip”,涵盖了1983张标注有详细信息的图片,这些图片包含三个不同的类别,分别是正常输电线、轻度覆冰输电线和严重覆冰输电线。这些数据为研究者提供了丰富的原始资料,可以用于训练和验证各种图像识别算法。 YOLO(You Only Look Once)是一种流行的实时目标检测系统。该系统的特点是快速和准确性,能够在单个网络中直接对图片进行处理,从而检测出图片中的多个目标。VOC(Visual Object Classes)数据集格式是一个常用的数据集格式,它为每张图片提供详细的类别和位置标注信息,使得研究者能够更方便地进行机器学习模型的训练和评估。 为了更好地使用这个数据集,首先需要对数据进行预处理,包括图像的缩放、增强等步骤,以适应不同检测模型的输入要求。数据集应该被分为训练集、验证集和测试集三个部分,分别用于模型的训练、参数的调整和模型性能的评估。对于电力行业的专业场景,由于检测对象的复杂性及多样性,数据集中的图片需要经过精细的标注工作,以确保标注的边界框和类别标签准确无误。 该数据集所包含的图像来自不同的拍摄环境和条件,这为模型提供了丰富的场景覆盖,有助于提高模型的泛化能力。同时,基于YOLO格式的标注,研究者们可以使用YOLO系列的算法进行训练和检测,这将极大地提高检测的速度和准确性。而且,这些数据集的使用不仅仅局限于覆冰检测,还可以扩展到电力设施的其他视觉检测任务,如电线断裂、绝缘子污秽检测等。 在模型训练完成后,评估模型的性能是必不可少的环节。通常使用准确率、召回率、F1分数等评价指标来衡量模型的性能。此外,模型的实时性能也非常重要,尤其是在电力行业,实时的检测结果对于及时采取预防措施具有决定性意义。因此,模型的运行效率和准确性都应受到同等重视。 随着人工智能技术的不断发展,尤其是深度学习在图像处理领域的应用越来越广泛,电力输电线覆冰检测技术也在朝着更加智能、高效的方向发展。而高质量的标注数据集,如本数据集,为深度学习模型提供了坚实的基础,有力地推动了电力设施安全运行的智能化管理。
2025-12-23 18:02:30 444B
1
双色球最近1000期开奖结果18122-25081,截止2025年7月19日
2025-12-22 23:17:07 33KB 数据集
1