文件太大放服务器下载,请务必先到资源详情查看然后下载 样本图:blog.csdn.net/2403_88102872/article/details/143981057 数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):148 标注数量(xml文件个数):148 标注数量(txt文件个数):148 标注类别数:1 标注类别名称:["ice"] 每个类别标注的框数: ice 框数 = 214 总框数:214 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:暂无 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注
2025-12-23 18:03:26 407B 数据集
1
电力输电线覆冰检测技术是一项确保电力系统安全稳定运行的关键技术。在恶劣的天气条件下,输电线路上的覆冰可能会导致电线的机械强度下降,甚至引起输电线路断裂,造成大面积停电。为了有效地预防和处理这些问题,科研人员和工程师们开发了多种覆冰检测技术,并且这些技术不断向着自动化、智能化发展。 数据集是人工智能、特别是机器学习领域中不可或缺的部分。一个高质量、大规模的数据集对于训练有效的模型至关重要。这次提供的“电力场景输电线覆冰检测数据集VOC+YOLO格式1983张3类别.zip”,涵盖了1983张标注有详细信息的图片,这些图片包含三个不同的类别,分别是正常输电线、轻度覆冰输电线和严重覆冰输电线。这些数据为研究者提供了丰富的原始资料,可以用于训练和验证各种图像识别算法。 YOLO(You Only Look Once)是一种流行的实时目标检测系统。该系统的特点是快速和准确性,能够在单个网络中直接对图片进行处理,从而检测出图片中的多个目标。VOC(Visual Object Classes)数据集格式是一个常用的数据集格式,它为每张图片提供详细的类别和位置标注信息,使得研究者能够更方便地进行机器学习模型的训练和评估。 为了更好地使用这个数据集,首先需要对数据进行预处理,包括图像的缩放、增强等步骤,以适应不同检测模型的输入要求。数据集应该被分为训练集、验证集和测试集三个部分,分别用于模型的训练、参数的调整和模型性能的评估。对于电力行业的专业场景,由于检测对象的复杂性及多样性,数据集中的图片需要经过精细的标注工作,以确保标注的边界框和类别标签准确无误。 该数据集所包含的图像来自不同的拍摄环境和条件,这为模型提供了丰富的场景覆盖,有助于提高模型的泛化能力。同时,基于YOLO格式的标注,研究者们可以使用YOLO系列的算法进行训练和检测,这将极大地提高检测的速度和准确性。而且,这些数据集的使用不仅仅局限于覆冰检测,还可以扩展到电力设施的其他视觉检测任务,如电线断裂、绝缘子污秽检测等。 在模型训练完成后,评估模型的性能是必不可少的环节。通常使用准确率、召回率、F1分数等评价指标来衡量模型的性能。此外,模型的实时性能也非常重要,尤其是在电力行业,实时的检测结果对于及时采取预防措施具有决定性意义。因此,模型的运行效率和准确性都应受到同等重视。 随着人工智能技术的不断发展,尤其是深度学习在图像处理领域的应用越来越广泛,电力输电线覆冰检测技术也在朝着更加智能、高效的方向发展。而高质量的标注数据集,如本数据集,为深度学习模型提供了坚实的基础,有力地推动了电力设施安全运行的智能化管理。
2025-12-23 18:02:30 444B
1
双色球最近1000期开奖结果18122-25081,截止2025年7月19日
2025-12-22 23:17:07 33KB 数据集
1
数据介绍 通过在目标RainTomorrow上训练二进制分类模型来预测明天是否会下雨 内容范围 该数据集包含来自众多澳大利亚气象站的每日天气预报。 目标变量RainTomorrow的意思是:第二天下雨了吗?是还是不是。 注意:训练二进制分类模型时,应排除变量Risk-MM。不排除它会泄漏您模型的答案并降低其可预测性。在此处了解更多信息。 数据来源 观测值来自众多气象站。每天的观测资料可从http://www.bom.gov.au/climate/data获得。澳大利亚气象局,2010年,澳大利亚联邦版权所有。 定义改编自http://www.bom.gov.au/climate/dwo/IDCJDW0000.shtml 也可以通过R包rattle.data和https://rattle.togaware.com/weatherAUS.csv获得此数据集。 软件包主页:http : //rattle.togaware.com。 并查看有关如何使用此数据的一些不错的示例:https : //togaware.com/onepager/
2025-12-22 20:41:11 3.87MB 数据集
1
在新生儿出生率数据集上使用Logistic回归模型对新生儿是否需要急救进行预测。回答以下问题:(1)通过调用系数函数和概要函数,尝试对自变量系数进行解释,并通过残差概要、伪R-平方、AIC准则对模型质量进行评价;(2)通过准确率和召回率、输出概率的双密度图对分类器性能进行评价。 在数据科学领域,Logistic回归模型是一种常用的方法,用于处理因变量为二分类问题的情况。在此背景下,东北大学的数据科学导论课程中,学生面临的一项平时作业涉及新生儿出生率数据集,并应用Logistic回归模型对新生儿是否需要急救这一问题进行预测。该作业要求学生不仅建立模型,还需要对模型的系数进行解释,并通过统计指标来评价模型的质量。 系数函数是用于获取Logistic回归模型中各个自变量的系数值。这些系数值反映了自变量对因变量的影响程度。在解释这些系数时,需要考虑它们的符号和大小。正系数意味着随着该自变量的增加,新生儿需要急救的概率增加;负系数则相反。系数的绝对值大小表明了影响程度的强弱。 概要函数通常指模型摘要,它提供了关于模型拟合度的各种统计指标,如伪R-平方、AIC准则等。伪R-平方与线性回归中的R-平方类似,用于衡量模型对数据变异性的解释程度,但需要注意的是,伪R-平方并不是真正的R-平方,它的值域是0到1,值越接近1,说明模型的拟合效果越好。AIC准则(赤池信息准则)用于模型选择时,它通过在拟合度与复杂度之间进行权衡来选择模型,AIC值越小,模型被认为越好。 对于模型质量的评价,除了上述统计指标外,还需要关注残差。残差概要可以帮助我们检查模型的残差是否满足一些基本假设,例如残差的独立性和正态性。通过分析残差,可以发现模型是否需要进一步的改进或变换。 准确率和召回率是分类问题中常用的评价指标。准确率指的是在所有被模型预测为正例的样本中,真正为正例的比例;召回率则是指在所有真正为正例的样本中,被模型正确预测出的比例。这两个指标有助于我们从不同的角度评估分类器的性能。输出概率的双密度图是一种可视化方法,它展示了模型对正负样本的概率分布情况,可以帮助我们直观地了解模型的预测性能。 该作业不仅要求学生掌握Logistic回归模型的建立过程,还要求能够从统计学角度对模型进行深入分析和评价。这不仅包括系数的解释和模型拟合度的评估,还包括对残差分布的检查,以及最终通过准确率、召回率等指标综合评价模型的预测能力。通过对新生儿是否需要急救进行预测,学生能够更好地理解数据科学在实际问题中的应用,以及如何使用统计模型来辅助决策过程。
2025-12-22 13:52:39 1.16MB 数据科学
1
告别漫长训练,即刻拥有顶尖检测能力! 我们倾力为您献上在权威MAR20数据集上精炼300轮次的YOLOv5m模型权重 (best.pt & last.pt)。 选择它,您不仅获得了一个文件,更获得了: 宝贵的时间成本节约 - 把精力专注在业务创新和优化上。 显著的经济成本降低 - 省去高昂的GPU训练费用。 项目成功的强力保障 - 基于高精度模型的可靠起点,平均精度达到了99.1%。 快速验证想法的能力 - 立即测试、演示、部署您的检测应用。
2025-12-22 01:33:41 79.87MB
1
告别漫长训练,即刻拥有顶尖检测能力! 我们倾力为您献上在权威MAR20数据集上精炼300轮次的YOLOv8m模型权重 (best.pt & last.pt)。 选择它,您不仅获得了一个文件,更获得了: 宝贵的时间成本节约 - 把精力专注在业务创新和优化上。 显著的经济成本降低 - 省去高昂的GPU训练费用。 项目成功的强力保障 - 基于高精度模型的可靠起点,平均精度达到了99.1%。 快速验证想法的能力 - 立即测试、演示、部署您的检测应用。
2025-12-22 01:32:33 90.63MB pytorch
1
本文介绍了新能源汽车数据集,涵盖了8个细分场景的数据集,包括粤港澳大湾区新能源汽车健康度数据集、电动汽车充电站用户行为数据集、电动汽车充电站充电运营数据集、中国城市电动汽车充电桩数据集、电动汽车充电需求时空数据集、新能源汽车电池异常检测数据集、电动城市公交驾驶综合数据集和中科大新能源车牌检测数据集。这些数据集为AI+新能源汽车的研究与创新提供了丰富的数据支持,涉及能源管理、故障预测、能耗估计、用户行为分析、充电需求预测、电池异常检测、性能估计与控制优化以及车牌OCR检测等多个应用领域。数据集详细描述了数据背景、应用领域、数据目录和数据说明,为研究人员提供了全面的数据资源。 新能源汽车产业作为全球汽车产业的重要组成部分,近年来得到了广泛关注。为了支持相关领域的研究与创新,新能源汽车数据集应运而生,提供了丰富、多样化的数据支持。该数据集包括了多个细分场景,具体涵盖了如下八个方面的内容: 1. 粤港澳大湾区新能源汽车健康度数据集:该数据集提供了关于新能源汽车在粤港澳大湾区内运行状况的详尽信息,能够帮助研究者分析和预测汽车的健康度和维护需求。 2. 电动汽车充电站用户行为数据集:此数据集记录了用户在充电站的使用习惯,包括充电频率、充电时间、用户偏好等,这些信息有助于充电网络规划和用户行为分析。 3. 电动汽车充电站充电运营数据集:提供了充电站的运营数据,包括充电量、运营成本、收益等,对充电网络的运营管理和效益分析具有重要价值。 4. 中国城市电动汽车充电桩数据集:收集了全国多个城市中电动汽车充电桩的分布、使用率等信息,有助于城市充电设施的规划和优化。 5. 电动汽车充电需求时空数据集:该数据集深入分析了电动汽车在不同时间段、不同区域内的充电需求,为充电基础设施的时空布局提供了科学依据。 6. 新能源汽车电池异常检测数据集:专门用于电池健康状态的监测和异常情况的早期发现,对保障新能源汽车的电池安全运行至关重要。 7. 电动城市公交驾驶综合数据集:包含了电动城市公交车的行驶数据、驾驶员操作数据等,有利于进行公交系统的性能评估和优化。 8. 中科大新能源车牌检测数据集:该数据集集中于车牌识别技术在新能源汽车领域的应用,对于实现智能交通系统中的车辆管理具有重大意义。 新能源汽车数据集对能源管理提供了数据支持,能够帮助开发者和研究人员进行故障预测、能耗估计以及优化充电站和充电桩的布局。此外,数据集还涉及用户行为分析、充电需求预测、电池异常检测、性能估计与控制优化等方面,为新能源汽车行业的技术进步和创新发展提供了重要的数据支持和应用价值。 在新能源汽车数据集中,数据背景、应用领域、数据目录和数据说明等内容详细记录,确保了数据的透明性和可追溯性,为研究人员提供了全面而深入的资源。通过这些数据集,研究人员可以进行模型训练、算法验证和新应用的开发,极大地推动了AI技术在新能源汽车领域的应用和进步。 面对当前新能源汽车行业的迅猛发展和日益增长的数据需求,这些数据集的发布为学术界和产业界提供了宝贵的资源,促进了跨学科、跨行业的知识融合与创新,对推动智能网联汽车技术的发展和能源互联网的建设具有不可忽视的作用。
1
工地行为检测数据集VOC+YOLO格式7958张9类别文档主要介绍了针对工地环境行为进行监测的数据集。该数据集包含7958张标注图片,采用的是Pascal VOC格式和YOLO格式相结合的方式,包含了jpg图片以及对应的VOC格式xml文件和YOLO格式的txt文件。数据集中的图片经过了增强处理,以提高模型训练的泛化能力。数据集共有9个标注类别,分别是手套(Gloves)、头盔(Helmet)、人员(Person)、安全鞋(Safety Boot)、安全背心(Safety Vest)、裸露的手臂(bare-arms)、未穿安全鞋(no-boot)、未佩戴头盔(no-helmet)和未穿安全背心(no-vest)。每个类别的标注框数不等,总计达到75433个标注框。标注工具是labelImg,标注规则是使用矩形框对各类别进行标注。 该数据集的标签信息包括了图片数量、标注数量、标注类别数和具体类别名称,同时也提供了各类别标注框的数量。这种详尽的标注信息有助于机器学习模型在训练过程中对不同行为进行准确识别。值得注意的是,数据集本身不提供任何对训练模型或权重文件精度的保证,但强调所有提供的标注图片都是准确且合理的。文档还提供了图片预览和标注例子,以及数据集的下载地址,方便用户获取和使用。 本数据集适用于工地安全监测、行为识别以及安全监管等领域,能够有效支持相关人工智能应用的开发和研究。通过这些标注数据的训练,可以使得计算机视觉系统更好地理解工地场景中的具体行为,从而对潜在的安全问题进行预警和干预。
2025-12-19 10:46:50 3.5MB 数据集
1
内容概要:该数据集为[VOC]男女数据集,采用Pascal VOC格式,包含6188张jpg图片和对应的6188个xml标注文件。标注类别分为“male”(男性)、“female”(女性)和“unknow”(未知)三类,分别有3966、2852和258个标注框。数据集使用labelImg工具进行标注,标注方式为对每个类别画矩形框。数据集中存在部分图像因仅显示局部(如一只手)而被标记为“未知”。数据集旨在提供准确合理的标注,但不对基于此数据集训练出的模型或权重文件的精度做任何保证。; 适合人群:计算机视觉领域研究人员、深度学习开发者、图像识别算法工程师等。; 使用场景及目标:①用于性别分类模型的训练与测试;②可用于研究和改进基于图像的人体检测算法;③作为基准数据集评估新算法的性能。; 其他说明:数据集仅包含jpg图片和对应的xml标注文件,不包括分割用的txt文件。标注过程中对于无法明确性别的个体采用了“unknown”类别,这有助于提高模型在面对模糊情况时的鲁棒性。
2025-12-18 17:37:15 14KB 数据集 VOC格式 图像标注 性别分类
1