数独 使用CNN模型以两种方式解决数独难题:直接(一次所有单元)和迭代(逐单元)。
2021-11-29 23:07:36 80.36MB JupyterNotebook
1
本文主要参考Battle of the Boosting Algos: LGB, XGB, Catboost,结果与原文有出入。 文章目录1. 对比标准1.1 数据集1.2 规则1.3 版本2. 结果2.1 准确率2.2 训练时间和预测时间2.3 可解释性2.3.1 特征重要性2.3.2 SHAP值2.3.3 可视化二叉树3. 总结4. 代码参考文献 1. 对比标准 1.1 数据集 分类:Fashion MNIST(60000条数据784个特征) 回归:NYC Taxi fares(60000条数据7个特征) 大规模数据集:NYC Taxi fares(2百万条数据7个特征) PS:本文只进行
2021-11-29 22:43:14 435KB atb lightgbm st
1
【图像识别】基于卷积神经网络CNN实现车牌识别matlab源码.md
2021-11-29 20:41:20 17KB 算法 源码
1
电能质量是电力系统重要的专业,华北电力大学齐林海教授在深圳全国第六届电能质量会议作的报告“深度学习与流式计算在电能质量分析评估中的机遇与挑战”,主要涉及4方面的内容,主要提炼了科学问题及其关键技术。
1
CNN卷积神经网络MATLAB代码,mnist_uint8.mat是数据文件,其他的函数都有相应的解释。
2021-11-28 20:22:35 14.04MB CNN 卷积神经网络
1
迁移学习CNN图像分类模型 - 花朵图片分类-附件资源
2021-11-28 18:46:31 106B
1
针对传统数据驱动的故障诊断方法难以从QAR数据中提取有效特征的问题,提出一种融合卷积神经网络(convolutional neural network,CNN)与长短时记忆网络(long short-term memory,LSTM)的双通道融合模型CNN-LSTM。CNN与LSTM分别作为两个通道,通过注意力机制(attention)融合,从而使模型能同时表达数据在空间维度和时间维度上的特征,并以时间序列预测的方式验证融合模型特征提取的有效性。实验结果表明,双通道融合模型与单一的CNN、LSTM相比,能够更有效地提取数据特征,模型单步预测与多步预测误差平均降低35.3%,为基于QAR数据的故障诊断提供一种新的研究思路。
1
6000张28x28 手写数字图片,lenet的网络实现,个人简单的改进的一个网络,包括训练的模型。
2021-11-28 09:53:51 37.52MB lenet 手写数字 cnn
1
高斯白噪声matlab代码 新的培训和测试代码()-18/12/2019 培训和测试代码(和) 合并批量归一化(PyTorch) import torch import torch . nn as nn def merge_bn ( model ): ''' merge all 'Conv+BN' (or 'TConv+BN') into 'Conv' (or 'TConv') based on https://github.com/pytorch/pytorch/pull/901 by Kai Zhang (cskaizhang@gmail.com) https://github.com/cszn/DnCNN 01/01/2019 ''' prev_m = None for k , m in list ( model . named_children ()): if ( isinstance ( m , nn . BatchNorm2d ) or isinstance ( m , nn . BatchNorm1d )) and ( isinstance ( prev_m , nn .
2021-11-27 16:12:15 143.66MB 系统开源
1
文字cnn 该代码实现了模型的。 图1:用于句子分类的CNN架构图 要求 Python 3.6 TensorFlow 1.4 (Singleton Config) tqdm 要求 项目结构 通过初始化项目 . ├── config # Config files (.yml, .json) using with hb-config ├── data # dataset path ├── notebooks # Prototyping with numpy or tf.interact
2021-11-27 14:47:41 2.44MB nlp deep-learning sentiment-analysis tensorflow
1