数据分析 Numpy+Scipy+Matplotlib+Pandas 基础数值算法 科学计算 数据可视化 序列高级函数 一、numpy是什么? 1.Numerical Python,数值的Python,补充了Python语言所欠缺的数值计算能力。 2.Numpy是其它数据分析及机器学习库的底层库。 3.Numpy完全标准C语言实现,运行效率充分优化。 4.Numpy开源免费。 二、Numpy的历史 1.1995年,Numeric,Python语言数值计算扩充。 2.2001年,Scipy->Numarray,多维数组运算。 3.2005年,Numeric+Numarray->Numpy。 4.2006年,Numpy脱离Scipy成为独立的项目。 三、Numpy的核心:多维数组 1.代码简洁:减少Python代码中的循环。 2.底层实现:厚内核(C)+薄接口(Python),保证性能。 代码:vector.py 四、Numpy基础 1.数组对象 1)用np.ndarray类的对象表示n维数组 实际数据:数组中元素 元数据:描述数组中的元素 将实际数据与元数据分开存放,一方面提高了内存空间
2024-01-18 14:36:05 22KB python numpy 数据分析
1
数据分析 Numpy+Scipy+Matplotlib+Pandas 基础数值算法 科学计算 数据可视化 序列高级函数 一、numpy是什么? 1.Numerical Python,数值的Python,补充了Python语言所欠缺的数值计算能力。 2.Numpy是其它数据分析及机器学习库的底层库。 3.Numpy完全标准C语言实现,运行效率充分优化。 4.Numpy开源免费。 二、Numpy的历史 1.1995年,Numeric,Python语言数值计算扩充。 2.2001年,Scipy->Numarray,多维数组运算。 3.2005年,Numeric+Numarray->Numpy。 4.2006年,Numpy脱离Scipy成为独立的项目。 三、Numpy的核心:多维数组 1.代码简洁:减少Python代码中的循环。 2.底层实现:厚内核(C)+薄接口(Python),保证性能。 代码:vector.py 四、Numpy基础 1.数组对象 1)用np.ndarray类的对象表示n维数组 实际数据:数组中元素 元数据:描述数组中的元素 将实际数据与元数据分开存放,一方面提高了内存空间
2024-01-18 14:36:02 18KB python numpy 数据分析
1
数据分析 Numpy+Scipy+Matplotlib+Pandas 基础数值算法 科学计算 数据可视化 序列高级函数 一、numpy是什么? 1.Numerical Python,数值的Python,补充了Python语言所欠缺的数值计算能力。 2.Numpy是其它数据分析及机器学习库的底层库。 3.Numpy完全标准C语言实现,运行效率充分优化。 4.Numpy开源免费。 二、Numpy的历史 1.1995年,Numeric,Python语言数值计算扩充。 2.2001年,Scipy->Numarray,多维数组运算。 3.2005年,Numeric+Numarray->Numpy。 4.2006年,Numpy脱离Scipy成为独立的项目。 三、Numpy的核心:多维数组 1.代码简洁:减少Python代码中的循环。 2.底层实现:厚内核(C)+薄接口(Python),保证性能。 代码:vector.py 四、Numpy基础 1.数组对象 1)用np.ndarray类的对象表示n维数组 实际数据:数组中元素 元数据:描述数组中的元素 将实际数据与元数据分开存放,一方面提高了内存空间
2024-01-18 14:35:56 18KB python numpy 数据分析
1
数据分析 Numpy+Scipy+Matplotlib+Pandas 基础数值算法 科学计算 数据可视化 序列高级函数 一、numpy是什么? 1.Numerical Python,数值的Python,补充了Python语言所欠缺的数值计算能力。 2.Numpy是其它数据分析及机器学习库的底层库。 3.Numpy完全标准C语言实现,运行效率充分优化。 4.Numpy开源免费。 二、Numpy的历史 1.1995年,Numeric,Python语言数值计算扩充。 2.2001年,Scipy->Numarray,多维数组运算。 3.2005年,Numeric+Numarray->Numpy。 4.2006年,Numpy脱离Scipy成为独立的项目。 三、Numpy的核心:多维数组 1.代码简洁:减少Python代码中的循环。 2.底层实现:厚内核(C)+薄接口(Python),保证性能。 代码:vector.py 四、Numpy基础 1.数组对象 1)用np.ndarray类的对象表示n维数组 实际数据:数组中元素 元数据:描述数组中的元素 将实际数据与元数据分开存放,一方面提高了内存空间
2024-01-18 14:35:52 14KB python numpy 数据分析
1
数据分析 Numpy+Scipy+Matplotlib+Pandas 基础数值算法 科学计算 数据可视化 序列高级函数 一、numpy是什么? 1.Numerical Python,数值的Python,补充了Python语言所欠缺的数值计算能力。 2.Numpy是其它数据分析及机器学习库的底层库。 3.Numpy完全标准C语言实现,运行效率充分优化。 4.Numpy开源免费。 二、Numpy的历史 1.1995年,Numeric,Python语言数值计算扩充。 2.2001年,Scipy->Numarray,多维数组运算。 3.2005年,Numeric+Numarray->Numpy。 4.2006年,Numpy脱离Scipy成为独立的项目。 三、Numpy的核心:多维数组 1.代码简洁:减少Python代码中的循环。 2.底层实现:厚内核(C)+薄接口(Python),保证性能。 代码:vector.py 四、Numpy基础 1.数组对象 1)用np.ndarray类的对象表示n维数组 实际数据:数组中元素 元数据:描述数组中的元素 将实际数据与元数据分开存放,一方面提高了内存空间
2024-01-18 14:35:45 64KB python numpy 数据分析
1
数据分析 Numpy+Scipy+Matplotlib+Pandas 基础数值算法 科学计算 数据可视化 序列高级函数 一、numpy是什么? 1.Numerical Python,数值的Python,补充了Python语言所欠缺的数值计算能力。 2.Numpy是其它数据分析及机器学习库的底层库。 3.Numpy完全标准C语言实现,运行效率充分优化。 4.Numpy开源免费。 二、Numpy的历史 1.1995年,Numeric,Python语言数值计算扩充。 2.2001年,Scipy->Numarray,多维数组运算。 3.2005年,Numeric+Numarray->Numpy。 4.2006年,Numpy脱离Scipy成为独立的项目。 三、Numpy的核心:多维数组 1.代码简洁:减少Python代码中的循环。 2.底层实现:厚内核(C)+薄接口(Python),保证性能。 代码:vector.py 四、Numpy基础 1.数组对象 1)用np.ndarray类的对象表示n维数组 实际数据:数组中元素 元数据:描述数组中的元素 将实际数据与元数据分开存放,一方面提高了内存空间
2024-01-18 14:32:57 12KB python numpy 数据分析
1
内容概要:10G的Python数据分析与挖掘实战学习视频,包括了Python3数据科学入门与实战,大数据入门到实战篇(Hadoop2.80),Python3实战Spark大数据分析及调度,数据分析与数据挖掘高级实战案例 适合人群:具备一定编程基础,工作1-3年的研发人员 能学到什么:Python3数据科学入门与实战,大数据入门到实战篇(Hadoop2.80),Python3实战Spark大数据分析及调度,数据分析与数据挖掘高级实战案例 阅读建议:10G的Python数据分析与挖掘实战学习视频,包括了Python3数据科学入门与实战,大数据入门到实战篇(Hadoop2.80),Python3实战Spark大数据分析及调度,数据分析与数据挖掘高级实战案例。
2024-01-18 14:27:38 72B Python 数据挖掘 数据分析 Hadoop
1
主要介绍了Python数据分析pandas模块用法,结合实例形式分析了pandas模块对象创建、数值运算等相关操作技巧与注意事项,需要的朋友可以参考下
2024-01-18 14:27:17 68KB Python 数据分析 pandas模块
1
主要介绍了Python数据分析模块pandas用法,结合实例形式详细分析了Python数据分析模块pandas的功能、常见用法及相关操作注意事项,需要的朋友可以参考下
2024-01-18 14:26:25 171KB Python 数据分析模块 pandas
1
1、数据结构基础 2、机器学习基础视频 -- 逻辑回归和朴素贝叶斯
2024-01-18 12:31:03 234B 人工智能 AI 机器学习 Python
1