简洁:1.数据集采用flickr8k(图像,对应的文本描述),使用keras创建VGG16定义的CNN网络。利用VGG16(去掉最后一层)提取图像特征,将flickr8k的图像文件转为图像特征,保存为pickle文件。 2.写不下了,自己看吧,代码有注释 涉及技术:Pycharm + Keras + Python 3.6 + numpy + opencv3.3.1等 该项目是对Jason Brownlee的文章《How to Automatically Generate Textual Descriptions for Photographs with Deep Learning》的代码复现。
2021-05-11 21:22:12 11KB 深度学习 LSTM vgg16
1
递归神经网络RNN与LSTM简介与算法推导。
2021-05-11 09:25:34 3.39MB RNN LSTM
1
lstm+ctc+cnn架构,进行不定长度验证码识别,达到不分割字符而识别验证码内容的效果。验证码内容包含了大小字母以及数字,并增加点、线、颜色、位置、字体等干扰项。本项目对gru +ctc+cnn
2021-05-10 22:35:22 104.35MB lstm
1
LSTM
2021-05-10 16:31:41 6KB JupyterNotebook
1
在本次实例的过程中,采取的数据集为50000条已经标注好的新闻文本信息,其中新闻的种类分别为:体育、娱乐、家居、房产、教育、时尚、时政、游戏、科技和财经,保存在cnew.txt文件中。 把文件读取出来,把文本信息和标签信息分别存储在sentences和labelbanes中,由于标签信息为中文,在模型训练的过程中,不能传入非结构化的数据,所以进行向量化,定义label2id将标签和序号相对应,并且把labelnames中的文字信息转化为数字存储在labels。具体的操作如图2所示。
2021-05-10 16:13:13 218KB 技术 python
1
命名实体识别代码,解压即可用 # BERT-BiLSTM-CRF BERT-BiLSTM-CRF的Keras版实现 ## BERT配置 1. 首先需要下载Pre-trained的BERT模型,本文用的是Google开源的中文BERT模型: - https://storage.googleapis.com/bert_models/2018_11_03/chinese_L-12_H-768_A-12.zip 2. 安装BERT客户端和服务器 pip install bert-serving-server pip install bert-serving-client,源项目如下: - https://github.com/hanxiao/bert-as-service 3. 打开服务器,在BERT根目录下,打开终端,输入命令: - bert-serving-start -pooling_strategy NONE -max_seq_len 144 -mask_cls_sep -model_dir chinese_L-12_H-768_A-12/ -num_worker 1
2021-05-10 11:42:36 883KB 文本分类
1
包含15年Natural Language Processing and Chinese Computing所有论文
2021-05-09 20:20:22 39.37MB NLP Deep Learnin LSTM
1
Attention-based LSTM for Aspect-level Sentiment Classification 论文代码 作者: Yequan Wang Minlie Huang Li Zhao Xiaoyan ZHu
2021-05-09 19:59:06 304KB 论文代码
1
NLP实战之keras+LSTM进行京东评论情感分析python,对语料进行简单分析,然后通过jieba分词、word2vec构造词向量,通过LSTM提取情感特征,利用LR二分类,达到准确度0.91897
2021-05-09 17:24:01 11.83MB LSTM 情感分析 keras NLP
1
先运行main.py进行文本序列化,再train.py模型训练 dataset.py from torch.utils.data import DataLoader,Dataset import torch import os from utils import tokenlize import config class ImdbDataset(Dataset): def __init__(self,train=True): super(ImdbDataset,self).__init__() data_path = rH:\073-nlp自然语言处理
2021-05-09 15:10:22 45KB c lstm OR
1