边做边学!PyTorch开发深度学习 支持库。 1.本文档中处理的任务内容和深度学习模型 第1章图像分类和迁移学习(VGG) 第2章对象识别(SSD) 第3章语义分割(PSPNet) 第4章姿势估计(OpenPose) 第5章GAN的图像生成(DCGAN,自我注意GAN) 第6章GAN异常检测(AnoGAN,Efficient GAN) 第7章通过自然语言处理(变压器)进行情感分析 第8章通过自然语言处理(BERT)进行情感分析 第9章视频分类(3DCNN,ECO) 本手册的详细内容在下面分别说明。 2.问题/更正由问题管理 问题和更正在此GitHub问题中进行管理。 如有任何疑问,请单击此处。 3.关于印刷错误 单击此处以获取本书中的印刷错误列表。我很抱歉。
2022-12-10 22:02:12 5.29MB JupyterNotebook
1
Udacity的无人驾驶汽车项目:此存储库包含我关于Udacity的第1学期的无人驾驶汽车纳米学位项目的总结报告,该项目专注于决策的计算机视觉和深度学习
2022-12-10 19:19:04 6.19MB python opencv machine-learning deep-learning
1
一份卷积神经网络初学者的指南
2022-12-10 11:13:06 4.94MB 深度学习
1
OPT(Omni-Perception Pre-Trainer)是全场景感知预训练模型的简称,中文名字叫紫东太初,是中科院自动化和华为联合研发的多模态预训练模型,本仓是紫东太初十亿参数级别模型的MindSpore版本代码,包含预训练模型及多个下游任务模型。
2022-12-10 09:28:25 123.21MB 人工智能 机器学习/深度学习
1
基于深度学习opencv实现3类水果识别检测源码(带GUI界面) +模型 +2380张数据集 +评估指标曲线 +操作使用说明 【备注】主要针对正在做毕设的同学和需要项目实战的深度学习cv图像识别模式识别方向学习者。 也可作为课程设计、期末大作业。包含:项目源码、训练好的模型、项目操作说明等,该项目可直接作为毕设使用。 也可以用来学习、参考、借鉴。如果基础不错,在此代码上做修改,训练其他模型。
内容概要:《大数据与人工智能》期末大论文,课程作业,重点知识梳理知识点归纳,心得体会,教学建议,课程评价。 适用人群:计算机相关专业软件工程大数据计算机等专业期末复习或者作业,水平有限有错误希望提出更改一起交流一起进步。 能学到什么:大数据与人工智能基础知识,名词概念,期末总结格式,包括神经网络模型、超参数、激活函数、学习率、卷积神经网络、python常用库基础语法概括等等。
1
自然语言处理(NLP)帮助智能机器更好地理解人类语言,实现基于语言的人机交流。计算能力的最新发展和大量语言数据的出现,增加了使用数据驱动方法自动进行语义分析的需求。由于深度学习方法在计算机视觉、自动语音识别,特别是NLP等领域的应用取得了显著的进步,数据驱动策略的应用已经非常普遍。本调查对得益于深度学习的NLP的不同方面和应用进行了分类和讨论。它涵盖了核心的NLP任务和应用,并描述了深度学习方法和模型如何推进这些领域。我们进一步分析和比较不同的方法和最先进的模型。
2022-12-09 18:30:22 2.19MB Deep NLP
1
Omega-AI:基于java打造的深度学习框架,帮助你快速搭建神经网络,实现训练或测试模型,支持多线程与GPU运算。
1
insightface是当前比较新和常用的人脸识别模型,本程序是基于insightface的人脸识别程序,可以实现实时视频识别和图片识别,识别准确率高和速度快,代码有注释,附有安装说明。如果遇到问题也可以和我交流。
1