内容概要:本文详细介绍了COMSOL优势流双渗透模型在裂隙发育边坡降雨入渗问题中的应用。首先,通过等效法将裂隙的平均效应考虑到基质中,并使用两个里查兹方程分别描述裂隙和基质的渗流情况,同时考虑裂隙与基质之间的水交换。其次,利用COMSOL Multiphysics软件建立了二维边坡模型,应用流量—压力混合入渗边界控制方程,分析了不同降雨强度(4mm/h、40mm/h)下边坡的降雨入渗及渗流规律。最后,通过具体案例展示了模型的构建、边界条件的处理及其应用效果。 适合人群:从事地质工程、岩土力学领域的研究人员和技术人员,尤其是关注边坡稳定性和降雨入渗问题的专业人士。 使用场景及目标:适用于需要进行边坡稳定性评估、降雨入渗模拟的研究项目和工程实践。目标是帮助用户掌握如何使用COMSOL软件建立和优化边坡降雨入渗模型,提高模拟精度和可靠性。 其他说明:文中提供的案例包括完整的数值模型、边界条件设置、云图展示和后处理结果,有助于读者深入理解并实际操作。
2025-09-22 01:09:19 186KB
1
COMSOL优化的双渗透模型:裂隙发育边坡降雨入渗的数值模拟与分析,COMSOL优势流双渗透模型。 在裂隙发育边坡,使用等效法将裂隙平均到基质中,使用两个里查兹方程来方便描述裂隙的渗流情况和基质渗流情况,并考虑裂隙与基质的水交。 边坡降雨入渗问题中两种边界条件的处理及应用。 模型简介: ①使用数值模拟软件COMSOL,复现lunwen(年庚乾,陈忠辉,张凌凡等.边坡降雨入渗问题中两种边界条件的处理及应用[J].岩土力学,建立二维边坡模型,应用流量—压力混合入渗边界控制方程,分析了不同降雨强度(4mm h、40mm h)下边坡降雨入渗及渗流规律。 ②案例内容:边坡降雨入渗完整数值模型一个(包括边界条件、云图、后处理结果),DXF二维模型一个,文献一篇。 ③模型特色:掌握降雨流量—压力混合入渗边界及渗流边界的处理,掌握模型计算收敛性技巧,锻炼后处理及入渗率、入渗量曲线作图。 ,COMSOL; 优势流; 双渗透模型; 裂隙发育边坡; 等效法; 里查兹方程; 渗流情况; 降雨入渗; 边界条件处理; 数值模拟; 模型特色:降雨流量—压力混合入渗边界,COMSOL双渗透模型:裂隙发育边坡的渗流模
2025-09-22 01:08:01 617KB 柔性数组
1
电子病历,作为医疗信息化的重要组成部分,记录了患者的病史、检查结果、治疗过程等关键信息,对临床诊断、治疗和疾病研究都具有不可替代的价值。然而,电子病历时序数据通常带有高噪声和非平稳特性,这对于数据处理与分析带来了很大挑战。传统模型在处理此类复杂数据时往往存在局限性,无法很好地提取关键信息并进行准确预测。 为了解决这一问题,本文提出了一种名为VMD-LSTM的混合模型。该模型的核心是“分解-预测-集成”的框架。利用变分模态分解(VMD)方法,将原始病历时序数据分解成若干个相对平稳的本征模态函数(Intrinsic Mode Functions, IMFs)。这一步骤有效地减少了数据中的噪声,并使后续的预测工作变得更加可行。 接下来,针对分解后的每个IMF分量,使用长短时记忆网络(Long Short-Term Memory, LSTM)进行时序预测。LSTM是一种特殊的循环神经网络(RNN),它拥有学习长期依赖信息的能力,非常适合处理和预测时间序列数据中的重要事件。 为了进一步提高预测精度,VMD-LSTM模型引入了参数自适应优化策略,如CPO(Constrained Parameter Optimization)算法,用于优化关键参数K和α。通过这种策略,模型能够更好地捕捉数据中的动态变化,同时适应不同患者情况下的病历数据特性。 研究的核心结果显示,VMD-LSTM模型在进行时序预测时取得了显著的性能提升。与单一使用LSTM模型(均方根误差RMSE为0.86,平均绝对误差MAE为0.62)和传统的经验模态分解与LSTM结合的EMD-LSTM模型(RMSE为0.63,MAE为0.45)相比,VMD-LSTM模型的预测精度最高,RMSE和MAE分别达到0.51和0.38。这些成果表明,VMD-LSTM模型在处理电子病历时序数据时,具有更高的预测精度和鲁棒性。 对于临床工作来说,这样的高精度时序分析工具具有重要价值。尤其是在ICU(重症监护室)环境下,医生需对患者病情进行实时监控和风险评估,准确的时序预测可以显著提高监护效率,提前识别患者病情的潜在风险,从而为患者提供更加精确及时的医疗服务。此外,该模型在疾病研究和医疗大数据分析领域也展现了广阔的前景和应用潜力,有助于提高医疗数据的使用价值和分析深度。 VMD-LSTM模型的研究,不仅为我们提供了一个处理高噪声电子病历时序数据的有效工具,更为后续相关研究提供了新的思路和方法。通过该模型的临床转化应用,有望在提高医疗服务质量、降低医疗成本等方面发挥重要作用。
2025-09-21 23:38:41 46KB 电子病历
1
基于Matlab的迁移学习技术用于滚动轴承故障诊断,振动信号转图像处理并高精度分类,基于Matlab的迁移学习滚动轴承故障诊断系统:高准确率,简易操作,Matlab 基于迁移学习的滚动轴承故障诊断 1.运行环境Matlab2021b及以上,该程序将一维轴承振动信号转为二维尺度图图像并使用预训练网络应用迁移学习对轴承故障进行分类,平均准确率在98%左右。 2.使用MATLAB自带的Squeezenet模型进行迁移学习,若没有安装Squeezenet模型支持工具,在命令窗口输入squeezenet,点击下载链接进行安装。 3.程序经过验证,保证程序可以运行。 4.程序均包含详细注释。 ,关键词:Matlab; 迁移学习; 滚动轴承故障诊断; 振动信号转换; 二维尺度图; 预训练网络; Squeezenet模型; 平均准确率; 程序验证; 详细注释。,基于Matlab的迁移学习轴承故障诊断系统:振动信号二维化与Squeezenet应用
2025-09-21 18:50:55 3.43MB kind
1
数字低空网络是近年来新兴的空天地一体化网络通信技术领域,它通过构建与地面通信网络相连的高空网络节点,实现对低空区域的通信覆盖,支持无人机、小型飞机等低空飞行器的高速率通信需求。这一技术的发展,对无人机等航空器的智能感知、精确导航、实时通讯等功能的实现至关重要。 本白皮书在深入研究的基础上,全面分析了数字低空网络的发展趋势、标准进展、关键架构模型,并系统性地探讨了业务需求、面临的挑战及关键技术。白皮书指出,随着低空开放政策的推进,数字低空网络将获得更为广阔的应用场景,例如无人机物流、低空航空监测、应急救援通信等。 具体而言,白皮书探讨了数字低空网络的三个核心架构模型。数字低空网络基本架构侧重于构建稳定可靠的通信网络,提供连续覆盖的网络服务;通感算融合架构则关注于通信、感知、计算能力的融合,以提高网络的智能化程度;低空安全管控技术体系架构则注重于网络的安全性和可靠性,确保低空飞行器运行的安全。 此外,白皮书详细介绍了数字低空网络的特征,包括其覆盖能力、网络延迟、传输速率等,同时对比分析了其与现有的通信系统的关联与差异。例如,在低空区域,由于环境复杂多变,数字低空网络需具备较高的网络适应性和抗干扰能力。 通信关键技术方面,白皮书讨论了立体覆盖技术、频谱资源管理、数据传输技术等关键问题。立体覆盖技术通过多层网络节点部署,提供覆盖低空的高质量网络服务;频谱资源管理技术能够有效管理频谱资源,减少频率干扰,提高频谱利用效率;数据传输技术则需满足低延迟、高带宽的需求,保证数据传输的实时性和准确性。 数字低空网络是未来智能交通系统、智慧城市建设的重要组成部分,也是推动无人机、低空飞行器等应用场景落地的关键技术。通过本白皮书的介绍,相关产业能够深入理解数字低空网络的发展趋势、核心技术与应用实践,为行业的创新和发展提供理论支撑和实践指导。
2025-09-21 13:34:46 9.62MB 通信技术 无人机 智能感知
1
在当前全球机器学习技术的发展中,大模型推理加速已经成为一个重要的研究方向。张君,作为昇腾生态的技术专家,通过参与昇思AI框架开发和大模型推理加速相关工作,致力于优化推理框架、模型算法和算子加速库等多个层面,旨在提升大模型推理性能。 张君指出大模型推理面临的三大技术挑战。首先是计算和内存需求的急剧增长。随着模型参数的扩大和序列的加长,推理过程中所需的计算和内存资源大幅增加。例如,2000亿参数量的模型在推理时需要6张RTX 3090Ti GPU或2张NVIDIA A100 GPU。而硬件带宽的限制、模型参数增长速度超过硬件内存容量提升速度以及算力与访存带宽提升速度的差距,使得推理超大模型变得越来越困难。 第二个挑战是推理延迟和吞吐量问题。推理过程包含两阶段,即Prefill阶段和Decode阶段。两阶段推理差异大,导致算力利用率低,并且难以充分使用算力资源。此外,不同请求的输入和输出长度不同,导致处理不同请求的计算量和延迟各异,进而影响用户体验和系统成本。 第三个挑战涉及从单模态到多模态再到更复杂的推理模型,如OpenAI o1的推理成本增加。随着应用场景的多元化,例如音视频推理,不仅计算量和显存需求增加,推理成本也相应提高。复杂的模型结构,如OpenAI o1内部的长思维链路,要求更高的计算量和推理时间。 针对这些挑战,张君介绍了昇腾硬件上的推理加速实践。通过优化推理框架、模型算法和算子加速库,能够有效提升大模型推理性能。例如,昇腾大模型推理框架MindIE-LLM和Transformer领域加速库ATB的开发,都是在这一方向上的重要工作。 张君的工作内容涵盖了从理论研究到实践应用的多方面。在理论研究方面,他发表了多篇论文,并参与了昇思AI框架的开发。在实践应用方面,他通过动态图的自动微分技术以及动静结合模块的优化,实现了推理加速的技术创新。 通过这些实践,张君展现了优化实践的路径,包括模型结构的优化、算子库的加速、硬件平台的优化以及分布式推理的创新。他的工作为大模型推理加速提供了重要的技术参考和实践案例,为昇腾硬件生态的建立和人工智能应用的发展做出了积极贡献。 展望未来,张君认为大模型的参数和序列将会继续增长,多模态和跨模态的应用将会变得越来越广泛。因此,推理加速技术的发展需要不断地进行,以适应更加复杂的模型和更广泛的应用场景。最终,张君希望通过不懈的努力,实现大模型推理加速的技术突破,推动人工智能技术的发展与应用。
2025-09-21 12:15:39 7.29MB
1
微环谐振腔光学频率梳MATLAB仿真研究:考虑色散、克尔非线性与外部泵浦效应的分析和实现,微环谐振腔中的光学频率梳仿真:LLE方程求解与多种因素的考虑分析,微环谐振腔的光学频率梳matlab仿真 微腔光频梳仿真 包括求解LLE方程(Lugiato-Lefever equation)实现微环中的光频梳,同时考虑了色散,克尔非线性,外部泵浦等因素,具有可延展性。 ,光学频率梳; 微环谐振腔; LLE方程; 仿真; 色散; 克尔非线性; 外部泵浦; 可延展性,MATLAB仿真微环谐振腔光频梳:LLE方程求解与色散克尔非线性分析
2025-09-21 11:24:28 1.31MB gulp
1
大语言模型的主要技术路线 大语言模型是自然语言处理领域的热门技术之一,通过基于深度学习技术的神经网络模型和大规模语料库的训练,生成自然语言文本的模型。本文将详细介绍大语言模型的主要技术路线,包括神经网络模型、预训练模型、生成模型和自动回复系统等方面。 神经网络模型是大语言模型的核心,常用的神经网络模型有循环神经网络(RNN)和变形自注意力模型(Transformer)。RNN 通过将前一个时间步的输出作为当前时间步的输入,从而实现对序列数据的建模,而 Transformer 则通过自注意力机制来实现对序列数据的建模,具有更好的并行化能力。神经网络模型是大语言模型的基础组件,对于大语言模型的性能和效果产生着重要的影响。 预训练模型是大语言模型的重要技术路线之一,通过在大规模语料库上进行预训练,可以用于各种自然语言处理任务的微调。其中最著名的是 BERT(Bidirectional Encoder Representations from Transformers),它通过双向 Transformer 模型进行预训练,可以用于文本分类、命名实体识别等任务。预训练模型可以学习到语言的规律和结构,从而实现更好的自然语言处理效果。 生成模型是大语言模型的另一个重要技术路线,通过训练大规模语料库,生成模型可以学习到语言的规律和结构,从而生成符合语法和语义的自然语言文本。生成模型是自动回复系统的基础组件,对于实现自动回复的功能产生着重要的影响。 自动回复系统是大语言模型的重要应用之一,通过训练大规模语料库,对话系统可以学习到自然语言的规律和结构,从而实现自动回复。自动回复系统可以应用于各种自然语言处理任务,如客服系统、智能客服等。 大语言模型的主要技术路线包括神经网络模型、预训练模型、生成模型和自动回复系统等方面。随着技术的不断发展,大语言模型将会在各种自然语言处理任务中发挥越来越重要的作用。
2025-09-21 11:21:38 3KB 语言模型
1
在MacBook Pro上安装双系统,特别是在Windows 10环境下使用微信和QQ时,可能会遇到摄像头无法打开的问题。这个问题通常是由于驱动程序不兼容或者没有正确安装导致的。下面,我们将详细探讨这个问题的原因以及如何解决。 让我们了解摄像头工作原理。在Windows 10系统中,摄像头通常依赖于USB视频类(UVC)驱动来正常运行。当在MacBook Pro的Windows 10双系统中使用摄像头时,可能由于驱动与硬件不匹配,或者驱动未被正确识别,导致摄像头无法开启。 针对这个问题,我们可以采取以下步骤进行解决: 1. **检查驱动更新**:确保你的Windows 10系统是最新版本,因为微软经常通过系统更新修复已知的驱动问题。打开“设置” -> “更新与安全” -> “检查更新”,确保系统已安装所有可用更新。 2. **安装摄像头驱动**:压缩包中的"摄像头for win10驱动.txt"文件很可能包含了摄像头驱动的详细说明。阅读并按照文本文件中的指示进行操作,这通常包括下载适合MacBook Pro的Windows 10摄像头驱动,并将它安装到系统中。提供的文件如"usbvideo.sys"、"hcmon.sys"、"ksthunk.sys"和"WdmCompanionFilter.sys"可能就是这些驱动的一部分,它们可能用于支持不同类型的USB设备,包括摄像头。 3. **UMDF驱动框架**:UMDF(User-Mode Driver Framework)是一种用于开发用户模式驱动的框架。Windows 10可能需要UMDF驱动来正确识别和运行特定硬件,比如摄像头。确保你的系统支持UMDF,并且已安装了最新的UMDF组件。 4. **权限设置**:有时,摄像头权限问题也可能导致无法打开。检查应用程序(如微信和QQ)是否具有访问摄像头的权限。在“设置” -> “隐私” -> “相机”中,确保已选择允许这些应用访问摄像头。 5. **重启及硬件检查**:如果以上方法无效,尝试重启电脑,或者在BIOS设置中检查硬件配置,确保摄像头已被正确识别。 6. **第三方软件辅助**:如果问题依然存在,可以考虑使用第三方驱动管理工具,如Driver Booster或DriverPack Solution,它们可以帮助自动检测并安装缺失或过时的驱动。 解决MacBook Pro在Windows 10双系统中摄像头无法打开的问题,主要集中在更新系统、安装正确的摄像头驱动和检查权限设置上。通过这些步骤,你应该能够成功地让微信和QQ在Windows 10环境中正常使用摄像头。不过,如果问题持续存在,建议联系硬件制造商或专业技术人员获取进一步帮助。
2025-09-20 23:41:17 213KB 微信 windows
1
vmlinux-to-elf 该工具允许从vmlinux / vmlinuz / bzImage / zImage内核映像(原始二进制Blob或已存在但已剥离的.ELF文件)中获取具有可恢复功能和可变符号的完全可分析的.ELF文件。 为此,它将在内核中扫描内核符号表( ),这是几乎每个内核中都存在的压缩符号表,大多数情况下未。 因为相关的符号表最初是压缩的,所以它应该恢复原始二进制文件中不可见的字符串。 它会生成一个.ELF文件,您可以使用IDA Pro和Ghidra对其进行分析。因此,该工具对于嵌入式系统的逆向工程很有用。 用法: ./vmlinux-to-elf < input_kernel.bin > < output> 全系统安装: sudo apt install python3-pip sudo pip3 install --upgrade lz4
2025-09-20 18:14:50 1.25MB linux reverse-engineering linux-kernel
1