文章链接:https://blog.csdn.net/shoppingend/article/details/124291112?spm=1001.2014.3001.5501
2022-04-20 18:08:35 3KB 算法
1
BA-Net:一种深度学习方法,可使用卫星图像的时间序列来绘制和绘制燃烧区域的日期 在过去的几十年中,用于烧伤区域的地图绘制和从遥感影像确定日期的方法一直是广泛研究的对象。 当前方法的局限性,以及对它们所需的输入数据的大量预处理,使其难以改进或应用于不同的卫星传感器。 在这里,我们探索基于每日多光谱图像序列的深度学习方法,这是一种有前途且灵活的技术,可应用于具有各种空间和光谱分辨率的观测。 我们使用从VIIRS 750 m波段重新采样到0.01º空间分辨率网格的输入数据测试了全球五个区域的建议模型。 派生的燃烧区域已针对更高分辨率的参考地图进行了验证,并与MCD64A1 Collection 6和FireCCI51全局燃烧区域数据集进行了比较。 我们显示,尽管使用的空间分辨率观测值低于两个全局数据集,但拟议的方法在燃烧区域测绘的任务中取得了竞争性的结果。 此外,与最先进的产品相比,我们改善
1
Dynamic Access Control Policy based on Blockchain and Machine Learning for the Internet of Things,区块链与机器学习的一个结合点与物联网的权限安全有关
2022-04-20 12:05:18 693KB 机器学习 区块链 人工智能
Q-Learning代码,给出使用Q-Learning 的代码。
2022-04-19 20:55:09 2KB Q-Learning代码
1
UNet Stylegan2 使用UNet Discriminator实现Stylegan2。该存储库的工作方式与大致相同。只需将所有stylegan2_pytorch命令替换为stylegan2_pytorch unet_stylegan2 。 更新:结果非常好。将需要研究将其与其他一些技术结合起来,然后我将编写完整的使用说明。 安装 $ pip install unet-stylegan2 用法 $ unet_stylegan2 --data ./path/to/data 引文 @misc { karras2019analyzing , title = { Analyzing and Improving the Image Quality of StyleGAN } , author = { Tero Karras and Samuli Laine and Miika
1
Qwerty学习者 为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 :camera_with_flash:在线访问 Vercel: : GitHub页面: : Gitee页数: ://kaiyiwing.gitee.io/qwerty-learner/ 国内用户建议使用Gitee访问 项目已发布VSCode插件版,一键启动,随时开始练习 :sparkles:设计思想 软件设计的目标人群为以英语为主要工作语言的键盘处理器。部分人会出现输入原始时的打字速度快于英语的情况,因为多年的新生输入练就了非常坚固的肌肉记忆 :flexed_biceps: ,而英语输入的肌肉记忆相对较弱,易出现输入英语时“提笔忘字”的现象。 同时为了巩固英语技能,也需要持续的背诵单词 :closed_book: ,本软件将英语单词的记忆与英语键盘输入的肌肉记忆的锻炼相结合,可以在背诵单词的同时巩固肌肉记忆。 为了避免造成错误的肌肉记忆,设计上如果用户单词输入错误则需要重新输入单词,可以确保用户维持正确的肌肉记
2022-04-18 23:28:44 3.13MB typing typing-game english-learning typingspeedtest
1
CNN-On-The-Cloud- 用于为Fashion MNIST数据集构建图像分类器的代码。 使用Keras库构建并在FloydHub云平台上接受培训。 您可以在签出相应的“中型”文章 您可以通过单击下面的按钮快速获得此代码并在云上运行。
2022-04-18 18:24:57 24KB tutorial deep-learning floydhub neural-networks
1
工具变量 (IV) 是一种常用的从观测数据进行因果推断的技术。 在实践中,IV 引起的变化可能是有限的,这会导致对因果效应的估计不准确或有偏差,并使该方法对政策决策无效。 我们通过将从候选外生数据构建工具变量的问题制定为机器学习问题来应对这一挑战。 我们提出了一种称为 MLIV(机器学习工具变量)的新算法,它允许从样本数据中同时执行工具学习和因果推断。 我们提供了正式的渐近理论,并展示了我们的估计量在非常一般的条件下的根 n 一致性和渐近效率。 对现实世界数据的模拟和应用表明,该算法非常有效,显着提高了从观测数据进行因果推断的性能。
2022-04-18 13:59:13 546KB Econometrics Machine Learning
1
甲状腺 用于评估在超声中观察到的甲状腺结节的代码库:与使用ACR TI-RADS的放射科医生进行深度学习的比较。 由开发。 它包含使用Keras框架和TensorFlow后端的多任务CNN模型的实现。 如果您在研究中使用此代码,请考虑引用以下内容: @article{buda2019evaluation, title={Evaluation of Thyroid Nodules Seen on Ultrasound: Comparison of Deep Learning to Radiologists Using ACR TI-RADS}, author={Buda, Mateusz and Wildman-Tobriner, Benjamin and Hoang, Jenny K and Thayer, David and Tessler, Franklin N an
1
spring-framework-learning-code:从0开始深入学习Spring小册子原始码
2022-04-17 23:42:15 635KB 系统开源
1