针对目前三维点云关键点检测方法检测的关键点的可描述性和再现性不强,且检测的关键点数量较少的问题,提出了一种新颖的关键点检测算法。首先为提高算法的效率,利用均匀采样方法减少三维点云中点的数量,降低三维点云的复杂度。然后利用具有良好描述性的方向直方图签名(SHOT)描述子对均匀采样的点进行多尺度描述,分析每个点多尺度SHOT描述子的独特性,选取SHOT描述子离散程度较大的点作为关键点。本文方法利用描述性较强的SHOT描述子对关键点的邻域进行描述,增强了关键点的可描述性。实验结果表明,本文方法的均匀采样时间效率高,满足关键点检测的时间要求,且本文检测关键点的方法比Harris3D、尺度不变特征变换(SIFT)、内部形状签名(ISS)关键点检测算法具有更好的再现性。因此,本文方法可以有效、快速地在三维点云模型和场景中检测出高质量的关键点。
2022-09-08 20:41:35 4.76MB 图像处理 关键点 多尺度 描述子
1
遥感数字图像处理教程知识点概要,简明总结了遥感数字图像处理的各方面的知识点
2022-09-08 16:25:46 435KB 遥感 图像处理
1
遥感数字图像处理习题与答案 第一部分 1. 什么是图像并说明遥感图像与遥感数字图像的区别 答图像 image 是对客观对象的一种相似性的描述或写真图像包含了这个客观对 象的信息是人们最主要的信息源 按图像的明暗程度和空间坐标的连续性划分 图像可分为模拟图像和数字图像 模拟图 像又称光学图像是指空间坐标和明暗程度都连续变化的计算机无法直接处理的图像 它属于可见图像 数字图像是指被计算机储存 处理和
2022-09-08 16:25:31 59KB 文档 互联网 资源
matlab 图像锐化,增强,直方图,分析,复原技术等共20多篇, PDF转化清晰版(非扫描)。
2022-09-07 16:40:52 11.85MB Matlab 图像处理 高清论文汇总
1
数字图像处理是一种通过计算机采用一定的算法对图形图像进行处理的技术。数字图像处理技术已经在各个领域上都有了比较广泛的应用。图像处理的信息量很大,对处理速度的要求也比较高。Matlab强大的运算和图形展示功能,使图像处理变得更加的简单和直观。本文基于MATLAB的数字图像处理环境,设计并实现了一个图像处理系统,展示如何通过利用Matlab的工具函数和多种算法实现对图形图像的各种处理。论述了利用设计的系统实现图像文件(bmp、 jpg、 tiff、 gif等)进行打开、保存、另存、打印、退出等功能操作,图像预处理功能(包括彩色图像的灰度化变换等、一般灰度图像的二值化处理、色彩增强等),图像分割,图像特征提取等图像处理。
2022-09-07 15:58:13 534KB 图像处理 代码 论文
1
1 非负矩阵分解(NMF或NNMF),也是非负矩阵逼近是多元分析和线性代数中的一组算法,其中矩阵V被分解为(通常)两个矩阵W和H ,具有所有三个矩阵都没有负元素的性质。这种非负性使生成的矩阵更容易检查。此外,在处理音频频谱图或肌肉活动等应用中,非负性是所考虑的数据所固有的。由于该问题通常不能完全解决,因此通常用数值近似。 2 适合机器学习,数值优化,图像处理,信号处理等专业的初学者进行分析和学习。 3 语音去噪一直是音频信号处理中长期存在的问题。如果噪声是静止的,则有许多去噪算法。例如,维纳滤波器适用于加性高斯噪声。然而,如果噪声是非平稳的,经典的去噪算法通常性能较差,因为非平稳噪声的统计信息难以估计。施密特等人。使用NMF在非平稳噪声下进行语音去噪,这与经典的统计方法完全不同。关键思想是干净的语音信号可以用语音字典稀疏地表示,但非平稳噪声不能。类似地,非平稳噪声也可以用噪声字典稀疏表示,但语音不能。NMF去噪算法如下。两个字典,一个用于语音,一个用于噪声,需要离线训练。
2022-09-07 15:06:06 31.61MB 机器学习 信号处理 图像处理 数值优化
1
不等式约束下的线性规划; 线性规划(LP),也称为线性优化,是一种在其要求由线性关系表示的数学模型中实现最佳结果(例如最大利润或最低成本)的方法。线性规划是数学规划(也称为数学优化)的一种特殊情况。更正式地说,线性规划是一种优化线性 目标函数的技术,受线性等式和线性不等式 约束。它的可行域是一个凸多面体,它是一个集合,定义为有限多个半空间的交集,每个半空间都由一个线性不等式定义。它的目标函数是定义在这个多面体上的实值仿射(线性)函数。线性规划算法在多面体中找到一个点如果存在这样的点,则此函数具有最小(或最大值)值。 出于多种原因,线性规划是一个广泛使用的优化领域。运筹学中的许多实际问题可以表示为线性规划问题。线性规划的某些特殊情况,例如网络流问题和多商品流问题,被认为足够重要,可以对专门的算法进行大量研究。许多其他类型的优化问题的算法通过将线性规划问题作为子问题来解决。从历史上看,线性规划的思想启发了优化理论的许多核心概念,例如对偶性、 分解和凸性的重要性及其概括。
2022-09-07 15:06:04 31.61MB 数值优化 线性优化 图像处理 信号处理
1
最小二乘法简单求解, 最小二乘法是回归分析中的一种标准方法,通过最小化残差的平方和(残差是观察值和模型提供的拟合值)在每个单独方程的结果中得出。 最重要的应用是数据拟合。当问题在自变量(x变量)中有很大的不确定性时,简单回归和最小二乘法就会出现问题;在这种情况下,可以考虑拟合变量误差模型所需的方法,而不是最小二乘法。 最小二乘问题分为两类:线性或普通最小二乘和非线性最小二乘,这取决于残差在所有未知数中是否是线性的。线性最小二乘问题出现在统计回归分析中;它有一个封闭形式的解决方案。非线性问题通常通过迭代细化来解决;在每次迭代中,系统都近似为线性系统,因此两种情况下的核心计算都是相似的。 多项式最小二乘法将因变量预测中的方差描述为自变量的函数以及与拟合曲线的偏差。 当观测来自一个指数族,其自然充分统计量和温和条件得到满足(例如,对于正态分布、指数分布、泊松分布和二项分布),标准化最小二乘估计和最大似然估计是相同的。[1]最小二乘法也可以作为矩估计法推导出来。 以下讨论主要是根据线性函数提出的,但最小二乘法的使用对于更一般的函数族是有效和实用的。此外,通过迭代地将局部二次近似应用
1
图像质量评价的研究已成为图像信息工程的基础技术之一。由于图像的最终接受者是人,所以评价图像质量应反映出人类的主观视觉感知。为构造一种符合人眼视觉特性的图像质量评价方法,利用点扩散函数针对人眼建立了含有波前像差信息的图像视觉评价模型,并用此模型分别对添加不同噪声的图像进行图像质量评价。实验结果表明,该方法是可行的、有效的,不同的人眼对同一幅图像的评价存在有差异,人眼波前像差越小观察到的图像越清晰。该方法不仅能够在评价图像质量时准确反映人眼的主观感知,而且能够直观地呈现不同人眼实际看到的图像。
1
基本的哈哈镜功能基本实现,通过调用第三方库实现了人脸检测和人脸的图片遮挡。鄙人凭厚脸皮以此项目在创新实践项目课上拿到了100分。
2022-09-07 09:07:49 3.47MB Java WebCam Cv 图像处理
1