基于图像处理(非机器学习)的方法实现细胞的检测和分割的全部数据资料并对结果进行评估。 我们将整个程序分成7个python文件,其中三个文件是细胞分割的算法,一个结果评估的文件,一个细胞再筛选的文件,一个图像处理的文件和一个main文件 三个划分算法分别为:cell_segmentation_by_sub.py、cell_segmentation_by_shape.py、cell_segmentation_by_fit.py. 结果评估文件是:divide_assessment.py. 细胞再筛选文件是:results_filter.py. 图像处理文件是:image_processing.py. 主程序文件:main.py. 基于图像处理(非机器学习)的方法实现细胞的检测和分割的全部数据资料并对结果进行评估。基于图像处理(非机器学习)的方法实现细胞的检测和分割的全部数据资料并对结果进行评估。基于图像处理(非机器学习)的方法实现细胞的检测和分割的全部数据资料并对结果进行评估。基于图像处理(非机器学习)的方法实现细胞的检测和分割的全部数据资料并对结果进行评估。
通过TrustSVD算法进行基于矩阵分解的商品推——数据集通过TrustSVD算法进行基于矩阵分解的商品推——数据集通过TrustSVD算法进行基于矩阵分解的商品推——数据集通过TrustSVD算法进行基于矩阵分解的商品推——数据集通过TrustSVD算法进行基于矩阵分解的商品推——数据集通过TrustSVD算法进行基于矩阵分解的商品推——数据集通过TrustSVD算法进行基于矩阵分解的商品推——数据集通过TrustSVD算法进行基于矩阵分解的商品推——数据集通过TrustSVD算法进行基于矩阵分解的商品推——数据集通过TrustSVD算法进行基于矩阵分解的商品推——数据集通过TrustSVD算法进行基于矩阵分解的商品推——数据集通过TrustSVD算法进行基于矩阵分解的商品推——数据集通过TrustSVD算法进行基于矩阵分解的商品推——数据集通过TrustSVD算法进行基于矩阵分解的商品推——数据集通过TrustSVD算法进行基于矩阵分解的商品推——数据集通过TrustSVD算法进行基于矩阵分解的商品推——数据集通过TrustSVD算法进行基于矩阵分解的商品推——数据集通过Trust
2022-11-25 16:27:09 21.27MB 机器学习 深度学习 推荐系统
基于python对机器学习算法的调包及自写包实现全部数据.zip基于python对机器学习算法的调包及自写包实现全部数据.zip基于python对机器学习算法的调包及自写包实现全部数据.zip基于python对机器学习算法的调包及自写包实现全部数据.zip基于python对机器学习算法的调包及自写包实现全部数据.zip基于python对机器学习算法的调包及自写包实现全部数据.zip基于python对机器学习算法的调包及自写包实现全部数据.zip基于python对机器学习算法的调包及自写包实现全部数据.zip基于python对机器学习算法的调包及自写包实现全部数据.zip基于python对机器学习算法的调包及自写包实现全部数据.zip基于python对机器学习算法的调包及自写包实现全部数据.zip基于python对机器学习算法的调包及自写包实现全部数据.zip基于python对机器学习算法的调包及自写包实现全部数据.zip基于python对机器学习算法的调包及自写包实现全部数据.zip基于python对机器学习算法的调包及自写包实现全部数据.zip基于python对机器学习算法的调包及自
基于python机器学习的天气预测和天气可视化项目源码全部资料.zip它实现了天气数据的爬取,预测和可视化。本项目分为三个部分,即爬取和处理数据,数据预测(包含评价方法)和数据可视化 即使用python爬取网站的json数据 数据预处理: 获取到的天气信息包括最高温,最低温都不是int格式的数字,通过对数据截取,将部分指标的数据变换为int类型 基于python机器学习的天气预测和天气可视化项目源码全部资料.zip它实现了天气数据的爬取,预测和可视化。本项目分为三个部分,即爬取和处理数据,数据预测(包含评价方法)和数据可视化 即使用python爬取网站的json数据 数据预处理: 获取到的天气信息包括最高温,最低温都不是int格式的数字,通过对数据截取,将部分指标的数据变换为int类型
基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料.zip基于机器学习的软件缺陷预测系统源码+全部数据资料
机器学习算法的总结,涉及机器学习基础知识,各种算法的评价指标,需要用的python库,涉及线性回归,逻辑回归,聚类,决策树,集成,SVM六种算法,有详细的代码和代码解释,运行结果的总结与分析,运行环境PyCharm和Jupyter Notebook,适合初学者,欢迎下载观看。
2022-11-25 11:26:43 13.59MB 机器学习 算法 python
1
用于机器阅读理解的藏语数据集
2022-11-24 21:25:18 883KB 机器学习 藏语 nlp
1
Titanic数据集来自kaggle
2022-11-24 18:14:58 88KB 机器学习
1
基于机器学习实现的农作物病虫害识别系统源码+全部数据.zip已获导师指导并通过的高分项目 本项目是一个非常完整的深度学习实践项目,内附从安装到部署详细教程。 目前,人工智能技术在农业领域的普及应用,还存在着数据共享不足、 算法门槛过高、算力垄断、实验与应用环境差距过大等问题。所以,本文基于 阿里云计算技术与机器学习计算机视觉技术,开发了一套农作物病虫害识别系统,大幅降低了人工智能技术使用门槛,使农业从业人员也可享受智能技术红利,促进智慧农业发展。 基于机器学习实现的农作物病虫害识别系统源码+全部数据.zip已获导师指导并通过的高分项目 本项目是一个非常完整的深度学习实践项目,内附从安装到部署详细教程。 目前,人工智能技术在农业领域的普及应用,还存在着数据共享不足、 算法门槛过高、算力垄断、实验与应用环境差距过大等问题。所以,本文基于 阿里云计算技术与机器学习计算机视觉技术,开发了一套农作物病虫害识别系统,大幅降低了人工智能技术使用门槛,使农业从业人员也可享受智能技术红利,促进智慧农业发展。
基于机器学习的水稻病虫害自动识别系统源码+数据.zip已获导师指导并通过的高分项目。 本项目是一个非常完整的机器学习实践项目,内附从安装到部署详细教程。 目前,人工智能技术在农业领域的普及应用,还存在着数据共享不足、 算法门槛过高、算力垄断、实验与应用环境差距过大等问题。所以,本文基于 云计算技术与人工智能机器学习学习的计算机视觉技术,开发了一套跨平 台、易使用的水稻病虫害自动识别系统,大幅降低了人工智能技术使用门槛,使农业 从业人员也可享受智能技术红利,促进智慧农业发展。基于机器学习的水稻病虫害自动识别系统源码+数据.zip已获导师指导并通过的高分项目。 本项目是一个非常完整的机器学习实践项目,内附从安装到部署详细教程。 目前,人工智能技术在农业领域的普及应用,还存在着数据共享不足、 算法门槛过高、算力垄断、实验与应用环境差距过大等问题。所以,本文基于 云计算技术与人工智能机器学习学习的计算机视觉技术,开发了一套跨平 台、易使用的水稻病虫害自动识别系统,大幅降低了人工智能技术使用门槛,使农业 从业人员也可享受智能技术红利,促进智慧农业发展。