基于图像处理(非机器学习)的方法实现细胞的检测和分割的全部数据资料.zip

上传者: 55305220 | 上传时间: 2022-11-25 18:27:48 | 文件大小: 19.02MB | 文件类型: ZIP
基于图像处理(非机器学习)的方法实现细胞的检测和分割的全部数据资料并对结果进行评估。 我们将整个程序分成7个python文件,其中三个文件是细胞分割的算法,一个结果评估的文件,一个细胞再筛选的文件,一个图像处理的文件和一个main文件 三个划分算法分别为:cell_segmentation_by_sub.py、cell_segmentation_by_shape.py、cell_segmentation_by_fit.py. 结果评估文件是:divide_assessment.py. 细胞再筛选文件是:results_filter.py. 图像处理文件是:image_processing.py. 主程序文件:main.py. 基于图像处理(非机器学习)的方法实现细胞的检测和分割的全部数据资料并对结果进行评估。基于图像处理(非机器学习)的方法实现细胞的检测和分割的全部数据资料并对结果进行评估。基于图像处理(非机器学习)的方法实现细胞的检测和分割的全部数据资料并对结果进行评估。基于图像处理(非机器学习)的方法实现细胞的检测和分割的全部数据资料并对结果进行评估。

文件下载

资源详情

[{"title":"( 39 个子文件 19.02MB ) 基于图像处理(非机器学习)的方法实现细胞的检测和分割的全部数据资料.zip","children":[{"title":"cell-detection-and-segmentation-master","children":[{"title":"results_filter.py <span style='color:#111;'> 2.76KB </span>","children":null,"spread":false},{"title":"main.py <span style='color:#111;'> 2.42KB </span>","children":null,"spread":false},{"title":".gitee","children":[{"title":"PULL_REQUEST_TEMPLATE.zh-CN.md <span style='color:#111;'> 179B </span>","children":null,"spread":false}],"spread":true},{"title":"cell_segmentation_by_fit.py <span style='color:#111;'> 5.86KB </span>","children":null,"spread":false},{"title":"train-5","children":[{"title":"1315","children":[{"title":"after_rect.jpg <span style='color:#111;'> 1.32MB </span>","children":null,"spread":false},{"title":"1315.jpg <span style='color:#111;'> 1.32MB </span>","children":null,"spread":false},{"title":"1315.xml <span style='color:#111;'> 23.38KB </span>","children":null,"spread":false}],"spread":true},{"title":"1310","children":[{"title":"after_rect.jpg <span style='color:#111;'> 1.26MB </span>","children":null,"spread":false},{"title":"1310.xml <span style='color:#111;'> 14.04KB </span>","children":null,"spread":false},{"title":"1310.jpg <span style='color:#111;'> 1.25MB </span>","children":null,"spread":false}],"spread":true},{"title":"184","children":[{"title":"after_rect.jpg <span style='color:#111;'> 988.43KB </span>","children":null,"spread":false},{"title":"184.xml <span style='color:#111;'> 50.07KB </span>","children":null,"spread":false},{"title":"184.jpg <span style='color:#111;'> 972.26KB </span>","children":null,"spread":false}],"spread":true},{"title":"1308","children":[{"title":"1308.xml <span style='color:#111;'> 44.91KB </span>","children":null,"spread":false},{"title":"after_rect.jpg <span style='color:#111;'> 1.62MB </span>","children":null,"spread":false},{"title":"1308.jpg <span style='color:#111;'> 1.60MB </span>","children":null,"spread":false}],"spread":true},{"title":"1312","children":[{"title":"after_rect.jpg <span style='color:#111;'> 1.20MB </span>","children":null,"spread":false},{"title":"1312.xml <span style='color:#111;'> 20.67KB </span>","children":null,"spread":false},{"title":"1312.jpg <span style='color:#111;'> 1.19MB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"image_processing.py <span style='color:#111;'> 4.31KB </span>","children":null,"spread":false},{"title":".idea","children":[{"title":"misc.xml <span style='color:#111;'> 186B </span>","children":null,"spread":false},{"title":"vcs.xml <span style='color:#111;'> 180B </span>","children":null,"spread":false},{"title":"modules.xml <span style='color:#111;'> 314B </span>","children":null,"spread":false},{"title":"cell_detection_and_segmentation.iml <span style='color:#111;'> 386B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 176B </span>","children":null,"spread":false},{"title":"inspectionProfiles","children":[{"title":"Project_Default.xml <span style='color:#111;'> 410B </span>","children":null,"spread":false},{"title":"profiles_settings.xml <span style='color:#111;'> 174B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"scanner_data.txt <span style='color:#111;'> 756B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 350B </span>","children":null,"spread":false},{"title":"fit_data.txt <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 2.30KB </span>","children":null,"spread":false},{"title":"save_picture","children":[{"title":"1315.jpg <span style='color:#111;'> 1.32MB </span>","children":null,"spread":false},{"title":"1310.jpg <span style='color:#111;'> 1.25MB </span>","children":null,"spread":false},{"title":"1308.jpg <span style='color:#111;'> 1.60MB </span>","children":null,"spread":false},{"title":"184.jpg <span style='color:#111;'> 972.45KB </span>","children":null,"spread":false},{"title":"1312.jpg <span style='color:#111;'> 1.19MB </span>","children":null,"spread":false}],"spread":true},{"title":"cell_segmentation_by_shape.py <span style='color:#111;'> 7.13KB </span>","children":null,"spread":false},{"title":"divide_assessment.py <span style='color:#111;'> 3.54KB </span>","children":null,"spread":false},{"title":"cell_segmentation_by_sub.py <span style='color:#111;'> 12.15KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明