路由变压器 全功能实现。本文提出使用k最近邻居将相似的查询/关键字路由到同一群集中以引起注意。 131k代币 安装 $ pip install routing_transformer 用法 简单的语言模型 import torch from routing_transformer import RoutingTransformerLM model = RoutingTransformerLM ( num_tokens = 20000 , dim = 512 , heads = 8 , depth = 12 , max_seq_len = 8192 , causal = True , # auto-regressive or not emb_dim = 128 , # embedding fa
1
关于在英语语料库上进行词嵌入训练的研究很多。 该工具包通过在德语语料库上应用深度学习,以训练和评估德语模型。 有关项目,评估结果和的概述可在或直接在此存储库中找到。 该项目是根据发布的。 开始吧 确保已安装Python 3以及以下库: pip install gensim nltk matplotlib numpy scipy scikit-learn 现在,您可以下载并在您的Shell中执行它,以自动下载此工具包和相应的语料库文件并进行模型训练和评估。 请注意,这可能需要大量时间! 您也可以克隆此存储库,并使用我已经进行评估和可视化。 如果您只想查看不同Python脚本的工作方式,
1
CVPR2021 Ensembling with Deep Generative Views核心内容中文翻译
2021-11-17 09:09:31 1.83MB 论文 机器学习 深度学习 计算机视觉
1
seqGAN PyTorch实现的“ SeqGAN:具有策略梯度的序列生成对抗网络”。 (于兰涛等)。 该代码经过高度简化,注释和(希望)易于理解。 实施的策略梯度也比原始工作( )简单得多,并且不涉及推广-整个句子使用单一奖励(受的示例启发) )。 使用的体系结构与原始工作中的体系结构不同。 具体而言,将循环双向GRU网络用作鉴别器。 该代码按论文中所述对合成数据进行实验。 我们鼓励您对代码作为问题的工作方式提出任何疑问。 要运行代码: python main.py main.py应该是您进入代码的入口。 技巧与观察 在这种情况下,以下黑客(从借来)似乎有效: 培训鉴别器
1
CNN-文本分类-keras 它是中作为功​​能api的简化实现 要求 训练 运行以下命令,如果要更改它将运行100个纪元,只需打开 python model.py 对于新数据 您必须重建词汇表然后进行培训。 引文 @misc{bhaveshoswal, author = {Bhavesh Vinod Oswal}, title = {CNN-text-classification-keras}, year = {2016}, publisher = {GitHub}, journal = {GitHub repository}, howpublished =
2021-11-16 20:32:13 481KB nlp text-mining theano deep-learning
1
TownCentreXVID数据集。该数据集包含一个视频`TownCentreXVID.avi`和标签文件`TownCentre-groundtruth.top`。其中TownCentreXVID.avi一共5 min,每1 sec包含25帧图像(1920*1080),因此一共包含7500帧图像;
2021-11-16 20:13:11 142.74MB TownCentre deep Learning
1
内眼深度学习 总览 这是一个深度学习工具箱,用于在医学图像(或更常见的是3D图像)上训练模型。 它与Azure中的云计算无缝集成。 在建模方面,此工具箱支持 细分模型 分类和回归模型 序列模型 分类,回归和序列模型可以仅将图像作为输入,或者将图像和非成像数据的组合作为输入来构建。 这支持了医疗数据的典型用例,在这些用例中,除了图像之外,还经常可以使用测量,生物标记或患者特征。 在用户方面,该工具箱专注于使机器学习团队能够实现更多目标。 它是云计算第一,并依靠来执行,簿记和可视化。 两者合计,得出: 可追溯性:AzureML保留已执行的所有实验的完整记录,包括代码快照。 标签会自动添加到实验中,以后可以帮助过滤和查找旧实验。 透明度:所有团队成员都可以访问彼此的实验和结果。 重现性:使用相同代码和数据的两次模型训练运行将得出完全相同的指标。 所有随机性源(例如多线程)均受到控制。 降低成本:使用AzureML,在开始培训工作时就请求所有计算(虚拟机,VM),并在最后释放它们。 闲置的虚拟机不会产生成本。 此外,Azure低优先级节点可用于进一步降低成本(便宜多达80%)。
2021-11-16 14:37:59 815KB deep-learning azure healthcare medical-imaging
1
基于多模态机器学习的膝关节骨关节炎进展的平原X线片和临床数据预测。 纸张代码和预先训练的模型。 Arxiv预印本: ://arxiv.org/abs/1904.06236 (c)奥卢大学Aleksei Tiulpin,2018-2019年。 关于 该存储库包含完整的代码,可重现本文中的培训过程。 要从头开始训练模型,您需要从MOST和OAI数据集中获取DICOM图像。 您还需要获取相应的元数据(可从网站下载。中提供了有关获取数据的更多说明。可在找到注释这些图像所需的元数据。 安装,培训和评估 依存关系 为了运行该项目,我们使用了Ubuntu 16.04 , Docker和nvidia-docker 。 这些是您唯一需要的软件依赖项。 请安装这些就可以了。 如果不想使用Docker ,则可以按照给定的Dockerfile遵循安装过程。 我们使用3xGTX1080Ti NVIDIA
1
Deep_Freeze_chs7.5破解版本.rar
2021-11-16 13:13:16 4.49MB Deep_Freeze_chs7
1
Matlab dpcm编码代码压缩感测 有关基于迭代/优化/深度学习/基于深度神经网络的图像/视频(量化)压缩/压缩感测(编码)的最新论文和代码。 基于块的DCS 单刻度感应 TGDOF [Matlab] R. Liu,Y。ZHang,S。Cheng,X。Fan,Zo Luo,“鲁棒压缩感测MRI的理论上有保证的优化框架,” AAAI人工智能大会会议录,2019年。 DNN-CS-STM32-MCU [Tensorflow] 实验室信号处理-深度神经网络在STM32 MCU板上用于基于CS的信号重建 提示CSNet [Matconvnet] W. Shi等人,《使用卷积神经网络的图像压缩传感》,IEEE Trans。 图像处理,2019年。 感知CS [[代码]]()[Caffe] 杜J,谢X,王C,石G.``感知压缩感知'',中国模式识别与计算机视觉会议,第268-279页,2018年。 ISTA-Net [Tensorflow] Z. Jian和G. Bernard,“ ISTA-Net:基于可解释性优化的启发式深度网络,用于图像压缩传感”,IEEE计算机视觉和模式识别国际会议,2
2021-11-16 11:26:33 6KB 系统开源
1