我们研究η形变的AdS2×S2×T6超弦的Poisson-Lie对偶。 η变形的背景满足II型超重力方程的一般化。 我们针对(i)完整的psu1,12 $$ \ mathfrak {p} \ mathfrak {s} \ mathfrak {u} \ left(1,\ left.1 \ right | 2 \ 右)$$超代数,(ii)完整的玻色子代数和(iii)Cartan子代数,其相应的背景有望满足标准的II型超重力方程。 前两种情况的度量和B字段是相同的,并通过对AdS2×S2×T6上的λ变形模型的解析连续性给出,其中圆环未变形。 但是,RR通量和膨胀系数会有所不同。 着眼于第二种情况,我们显式地得出背景,并与已知的λ变形模型在II型超重力中AdS2×S2上的已知嵌入的解析继续一致。
2023-12-08 14:32:25 864KB Open Access
1
通过一组称为量子光谱曲线的函数方程,可以有效地解决AdS5×S5超弦谱及其双平面最大超对称Yang-Mills理论的光谱问题。 我们讨论了相同的概念如何应用于η形变的AdS5×S5超弦,这是具有量子群对称性的AdS5×S5超弦的可积变形。 该模型可以视为AdS5×S5超字符串的三角形式,例如XXZ和XXX自旋链之间的关系,或者香肠和S2 sigma模型。 我们通过将相应的基态热力学Bethe ansatz方程重新构造为解析Y系统,得出η形变弦的量子光谱曲线,并将其映射到解析T系统,在适当的量规固定后,该解析T系统将生成Pμ系统-量子 光谱曲线。 然后,我们讨论对这个系统的渐近性的约束,以找出特定的激发态。 在光谱级别,η形变的弦及其量子光谱曲线插值在AdS5×S5超弦和“镜像” AdS5×S5上的超弦之间,反映了η形变的弦的光谱和热力学数据之间存在更一般的关系。 尤其是,镜面AdS5×S5弦的光谱问题以及未变形的AdS5×S5弦的热力学是由我们的三角量子光谱曲线的第二有理极限来描述的,它不同于规则的未变形极限。
2023-12-08 14:17:02 835KB Open Access
1
Poisson-Lie对G / H对称空间sigma模型相对于简单Lie组G的η变形进行对偶化,从而推测出相关λ变形模型的解析连续性。 在本文中,我们研究了何时可以将η变形模型相对于G的子组G0进行对偶化。从对复杂化组的一阶作用开始,并整合与不同子代数相关的自由度,我们发现有可能 当G0关联到子Dynkin图时进行对偶。 也可以包括由其余的Cartan发电机生成的其他U1因子。 最终的构造在单个框架中统一了关于G的Poisson-Lie对偶和η变形的完全阿贝尔对偶,并且在两种情况下都采用了单模积分的代数。 我们推测将这些结果扩展到路径积分形式可以为为什么η形变的AdS5×S5超弦不是单环Weyl不变提供一个解释,也就是说,联轴器不能解决IIB型超重力方程,但其完全阿贝尔方程 对偶和λ变形模型。
2023-12-08 14:08:01 857KB Open Access
1
我们建立了一个计算<math> AdS 5 < / msub> / CFT 4 </ math> 可整合性。 具体而言,我们推导出了热力学Bethe ansatz方程,该方程产生了平面<math> N << / mo> = 4 </ math>超级Yang- 在't Hooft联轴器的任何值上都可以得出Mills理论。 我们在w处扰动地求解这些方程
2023-12-08 11:17:34 171KB Open Access
1
Berry连接描述了由绝热变化的哈密顿量引起的变换。 我们研究了如何通过改变提供模块化哈密顿量的区域来影响模块化哈密顿量的零模。 在二维共形场理论的真空中,全局共形对称性选择了一个独特的模块化Berry连接,我们可以直接对其进行计算,并使用二维三维反de Sitter(<math> < mi> AdS 3 </ math
2023-12-08 11:10:07 193KB Open Access
1
在彩色玻璃冷凝物框架中使用稀疏密度分解,我们研究了质子核碰撞中重夸克和带电轻质子之间的方位角相关性。 我们以光强子为参考提取二次谐波<math> v 2 </ math>,通常称为椭圆流 。 重介子和轻质强子之间的这种特定方位角相关性是最近在大型强子对撞机上测量的。 前
2023-12-08 11:03:44 298KB Open Access
1
在本文中,我们考虑<math> T T ¯ / < mi> J T </ math> $$ T \ overline {T} / J \ overline {T} $ $变形的CFT作为扰动理论并计算由于<math> T T ¯ / J T ¯ </ math> $$ T \ overline {T} / J \ overline {T} $$变形。 适用
2023-12-08 10:57:52 777KB Open Access
1
我们研究<math中的<math> 4 </ math> Wilson-Fisher不动点 由两个自旋<math> <的乘积确定的固定大电荷扇区中的> 2 + 1 </ math>维度 mi> j </ math>表示形式<math> j L j R </ math>。 使用有效场论,我们得出了等角维<math> D j
2023-12-08 10:47:16 272KB Open Access
1
我们建立了通货膨胀和暗能量的四参数超重力模型,对其进行约束,使δρρ$$ \ frac {\ delta \ rho} {\ rho} $$,ns和宇宙常数Λ取其已知的可观测值,但是在 gravitino的质量m 3/2和张量与标量之比r是自由参数。 我们专注于广义宇宙学α吸引子模型,具有对数Kähler势,幂零的Goldstino和在de Sitter最小值处自发破碎的超对称性。 B模式下的未来数据将指定参数α,以测量Kähler流形的几何形状。 在这些模型中,通过普遍取消正面的Goldstino和负面的Gravitino贡献,支持了暗能量的弦线景观思想。 在我们的模型中,SUSY打破与格拉维蒂诺质量有关的M的比例是一个可控制的参数,与通货膨胀的比例无关,它将受到LHC数据和未来的对撞机能量前沿实验的约束。
2023-12-08 10:19:17 844KB Open Access
1
在这项工作中,我们探索了一个双重迷惑的重子Ξcc(3621)和T doublet(D1,D2 *)迷住介子之间的S波相互作用的系统研究。 我们首先分析重夸克自旋对称形成ΞccD1/ΞccD2*束缚态的可能性。 然后,我们进一步考虑一维波混频和耦合通道效应,在一个玻色子交换模型中对ΞccD1/ΞccD2*相互作用进行动力学研究。 最后,我们的数值结果符合重夸克自旋对称分析的建议:I(JP)= 0(1/2 +,3/2 +)的ΞccD1系统和I(JP)= 0( 3/2 +,5/2 +)可能是松散的三重魅力分子五夸克。 同时,我们还将模型扩展到ΞccD′1和ΞccD′2 *系统,结果表明ΞccD′1和ΞccD′2 *的等标量可能是分子候选物。
2023-12-08 09:02:07 595KB Open Access
1