matlab开发-神经网络自适应融合。基于模式识别的RBF两核自适应融合仿真
2022-03-10 14:29:38 1.03MB 未分类
1
两条航迹分布式融合,包含源代码,原理简明易懂,加权法,方便可进行算法优化。matlab直接运行
2022-03-09 22:18:31 50KB 航迹融合
1
采用冗余提升不可分离小波变换的改进NSCT图像融合算法,赵春晖,马丽娟,在灰度可见光与红外图像融合中,针对NSCT变换中金字塔分解(NSPFB)对细节能力捕捉不强的缺点,提出采用冗余提升变换替代NSPFB的图像融��
2022-03-09 16:18:10 488KB 冗余提升
1
车型识别技术是智能运输系统的核心。针对目前车型识别方法的不足,提出了一种基于车辆声音和震动信号相融合的车型识别方法。用BCS算法提取声震信号的特征,并在特征级融合形成特征向量,以此作为训练样本对支持向量机的分类器进行训练。对两种车型的声音和震动数据进行处理的结果表明,基于特征级融合的声震信号能够准确识别不同的车型,识别准确率达到86%以上,是一种有效的车型识别方法。
2022-03-09 16:09:02 545KB 车型识别
1
针对光学相干层析视网膜图像进行人工分类诊断时存在漏检、效率低等问题,提出一种基于深度学习技术构建联合多层特征的卷积神经网络分类算法。首先通过均值漂移和数据归一化算法对视网膜图像进行预处理,并结合损失函数加权算法解决数据不平衡问题;其次使用轻量深度可分离卷积替代普通卷积层,降低模型参数量,采用全局平均池化替换全连接层,增加空间鲁棒性,并联合不同卷积层构建特征融合层,加强层间特征流通;最后使用SoftMax分类器进行图像分类。实验结果表明,该模型在准确率、精确率、召回率上分别达到97%、95%、97%,缩短了识别时长,所提方法在视网膜图像分类诊断中具有良好的性能。
2022-03-09 13:31:56 3.35MB 图像处理 卷积神经 视网膜图 特征融合
1
传统Canny算法采用高斯滤波会造成图像的过度光滑,容易导致缓变边缘的丢失,而且梯度幅值的计算方法没有充分考虑到3×3邻域内周围像素对中心像素的影响。针对上述存在的问题与不足,结合小波融合技术的优势,提出了一种基于改进Canny算子与图像形态学融合的边缘检测方法,利用改进的Canny算子和图像形态学分别对图像进行边缘检测,然后应用小波融合技术把两种方法检测出来的边缘进行图像融合,得到最终的图像边缘。仿真结果表明,该算法具有较好的抗噪能力,有效地提高了边缘检测的准确性和完整性。
2022-03-09 11:08:51 531KB 数码影像
1
融合多个传感器多个周期的数据,最终做出决策 融合多个传感器多个周期的数据,最终做出决策 融合多个传感器多个周期的数据,最终做出决策 融合多个传感器多个周期的数据,最终做出决策
2022-03-09 10:27:18 2KB D-S 多传感器 信息融合 matlab
1
为了准确检测视频中的遮挡区域,提出一种融合多特征基于图割的视频遮挡区域检测方法。基于光流和亮度信息提出三种新的遮挡相关特征—亮度块匹配特征、最大光流差特征和光流残差特征,并定义了所提特征的计算方法。以像素点为单位将所提特征组成特征向量输入随机森林分类器,获取像素点及邻接像素点对的遮挡相关信息。综合利用所获取的遮挡相关信息,通过构造遮挡检测能量函数将遮挡检测问题转化为优化问题。根据该能量函数构造无向图,并基于图割理论对能量函数进行求解,从而得到最终的遮挡区域检测结果。实验结果表明,同现有表现较好的遮挡检测方法相比,所提方法具有较高的准确性和较好的实时性。
2022-03-08 19:23:11 3.18MB 机器视觉 视频序列 遮挡区域 光流
1
针对非下采样金子塔(NSP)用于平移不变的剪切波变换(NSST)中不能有效捕获图像的结构信息问题,提出一种多尺度非局部均值滤波(MNLMF)和剪切波(SF)方向滤波的新变换,即利用MNLMF代替NSST中NSP分解,然后将其用到图像融合中,并将输入图像分解成不同子带.对于近似子带,采用区域像素能量(PE)与梯度能量(GE)加权和的融合规则;对于方向子带,提出基于GE与系数绝对值(CAV)混合的融合规则.同时提出了基于MNLMF与SF的图像融合算法.仿真对比实验表明,所提出的方法在视觉感知和客观质量评价两个方面具有明显的优势.
1
提出了一种基于EMAPs和SMLR的高光谱图像分类方法。 首先,我们采用EMAPs(扩展形态学多属性谱)算法有效地提取了HSI的空间信息,并结合光谱信息形成了空间光谱特征融合模型。 EMAP可以用多个属性结构替换简单的结构元素,并对其进行级联以获得多个结构的属性特征。 然后,我们利用SMLR(稀疏多项式逻辑回归)进行HSI分类。 SMLR适用于高维和大数据集。 采用基于MLR的多分类器,并采用快速算法学习稀疏的多分类器。 与HSI实验中的其他方法相比,我们的方法提供了出色的结果。
2022-03-08 15:10:26 505KB hyperspectral image; classification; EMAPs;
1