以上是基于codesys V3编写的源代码
2024-06-09 18:30:51 48.69MB
1
汇川AC801 AM400 AM600程序 CODESYS平台 Ethercat带20个伺服 程序完整 有威纶通触摸屏程序 程序架构好 修改一下就可以应用
2024-06-09 17:27:30 575KB
1
02基于stm32超声波仿真系统系统(程序源码+仿真+论文)项目
2024-06-09 14:40:54 5.89MB stm32 毕业设计
1
一款用于测算排水工程的小程序,希望大家有用,希望大家喜欢。
2024-06-09 14:16:47 1.71MB
1
安装选择电动设备时,不知道选择多大平方的电缆时,可以试试这个计算软件。非专业人员也可以试试,不过还是建议让专业人员把关。
2024-06-09 12:08:05 5.66MB 电缆选择
1
【优化生产】双种群遗传算法求解生产线平衡问题【含Matlab源码 3311期】.zip
2024-06-08 16:34:50 1.84MB
1
主要是基于蚁群聚类算法的一些实现,比较详细的描述的蚁群算法的基本原理
2024-06-08 10:54:47 426KB
1
python 实现遗传算法 课程设计 课程作业 Genetic Algorithm 基本字符串 Basic String 遗传算法是计算数学中用于解决最优化的搜索算法,是进化算法的一种。进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择以及杂交等等。 遗传算法通常实现方式为一种计算机模拟。对于一个最优化问题,一定数量的候选解可抽象表示为染色体,使种群向更好的解进化。 在遗传算法里,优化问题的解被称为个体,它表示为一个变量序列,叫做染色体或者基因串。染色体一般被表达为简单的字符串或数字符串,不过也有其他的依赖于特殊问题的表示方法适用,这一过程称为编码。首先,算法随机生成一定数量的个体,有时候操作者也可以干预这个随机产生过程,以提高初始种群的质量。在每一代中,都会评价每一个体,并通过计算适应度函数得到适应度数值。按照适应度排序种群个体,适应度高的在前面。这里的“高”是相对于初始的种群的低适应度而言。
2024-06-08 09:12:02 3KB python 课程资源 遗传算法 课程设计
1
豌豆夹安装目录或者自己下载adb也可以,将原有的Launcher使用如下命令 1.adb root 获取root权限 2.adb remount 重新以root加载 3.adb push x:/ddd/Launcher.apk /system/app 这里x:/ddd是你Launcher存放的路径 4.重启或者试一下在adb remount可能不用重启就好了 这样也就保证了你的所有软件,联系人,电话信息记录和设置不丢失
2024-06-07 20:08:30 2.79MB Lephone
1
协同过滤算法(Collaborative Filtering)是一种经典的推荐算法,其基本原理是“协同大家的反馈、评价和意见,一起对海量的信息进行过滤,从中筛选出用户可能感兴趣的信息”。它主要依赖于用户和物品之间的行为关系进行推荐。 协同过滤算法主要分为两类: 基于物品的协同过滤算法:给用户推荐与他之前喜欢的物品相似的物品。 基于用户的协同过滤算法:给用户推荐与他兴趣相似的用户喜欢的物品。 协同过滤算法的优点包括: 无需事先对商品或用户进行分类或标注,适用于各种类型的数据。 算法简单易懂,容易实现和部署。 推荐结果准确性较高,能够为用户提供个性化的推荐服务。 然而,协同过滤算法也存在一些缺点: 对数据量和数据质量要求较高,需要大量的历史数据和较高的数据质量。 容易受到“冷启动”问题的影响,即对新用户或新商品的推荐效果较差。 存在“同质化”问题,即推荐结果容易出现重复或相似的情况。 协同过滤算法在多个场景中有广泛的应用,如电商推荐系统、社交网络推荐和视频推荐系统等。在这些场景中,协同过滤算法可以根据用户的历史行为数据,推荐与用户兴趣相似的商品、用户或内容,从而提高用户的购买转化率、活跃度和社交体验。 未来,协同过滤算法的发展方向可能是结合其他推荐算法形成混合推荐系统,以充分发挥各算法的优势。
2024-06-07 13:05:38 5KB 协同过滤算法
1