CSDN佛怒唐莲上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-05-03 21:10:05 1.45MB matlab
1
本文深入探讨了如何利用深度学习技术对Python程序进行预测。我们将重点介绍CNN-GRU-Attention模型,这是一种结合了卷积神经网络(CNN)、门控循环单元(GRU)和注意力机制的先进模型。文章将从模型的理论基础出发,逐步引导读者理解其工作原理,并提供实际的代码示例,展示如何在Python中实现这一模型。内容适合对深度学习和自然语言处理有一定了解的开发者,以及对使用机器学习技术进行代码预测感兴趣的研究人员。 适用人群: - 机器学习工程师 - 数据科学家 - Python开发者 - 自然语言处理研究人员 使用场景: - 代码自动补全和预测 - 程序错误检测和调试 - 软件开发中的智能辅助工具 关键词 深度学习
2024-05-03 16:50:27 1.37MB python
1
多式联运基于遗传算法求解多式联运低碳路径规划问题matlab源码
2024-05-03 16:24:04 1.93MB matlab
1
Matlab研究室上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-04-29 13:48:31 2.33MB matlab
1
【优化预测】蝙蝠算法优化BP神经网络预测【含Matlab源码 1379期】.zip
2024-04-28 19:09:04 66KB
1
CSDN佛怒唐莲上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-04-28 17:05:26 3.42MB matlab
1
图像超分辨率重建matlab源码 超分辨率图像处理 从几幅图象中提取像素合成新的比较清晰的图像-super-resolution image processing images from pieces of pixels from the synthesis of new clearer images 文件列表(点击判断是否您需要的文件): superresolution_v_2.0 .....................\.DS_Store .....................\application .....................\...........\.DS_Store .....................\...........\applicability.m .....................\...........\c2p.m .....................\...........\Contents.m .....................\...........\create_images.m .....................\...........\estimate_motion.m .....................\...........\estimate_rotation.m .....................\...........\estimate_shift.m .....................\...........\generatePSF.m .....................\...........\generation.fig .....................\...........\generation.m .....................\...........\gpl .....................\...........\html .....................\...........\....\.DS_Store .....................\...........\....\SR_about.html .....................\...........\....\SR_documentation.html .....................\...........\interpolation.m .....................\...........\iteratedbackprojection.m .....................\...........\keren.m .....................\...........\keren_shift.m .....................\...........\logo_epfl_small.tif .....................\...........\logo_warning.tif .....................\...........\lowpass.m .....................\...........\lucchese.m .....................\...........\marcel.m .....................\...........\marcel_shift.m .....................\...........\n_conv.m .....................\...........\n_convolution.m .....................\...........\papoulisgerchberg.m .....................\...........\pocs.m .....................\...........\robustnorm2.m .....................\...........\robustSR.m .....................\...........\shift.m .....................\...........\SR_about.m .....................\...........\SR_documentation.m .....................\...........\superresolution.fig .....................\...........\superresolution.m
2024-04-28 12:33:48 123KB
1
【优化覆盖】基于matlab飞蛾扑火算法和改进的飞蛾扑火算法求解WSN覆盖优化问题【含Matlab源码 3633期】.mp4
2024-04-25 19:59:22 4.45MB
1
1、古典显式格式求解抛物型偏微分方程(一维热传导方程) 2、古典隐式格式求解抛物型偏微分方程(一维热传导方程) 3、Crank-Nicolson隐式格式求解抛物型偏微分方程 4、正方形区域Laplace方程Diriclet问题的求解 如: function [U x t]=PDEParabolicClassicalExplicit(uX,uT,phi,psi1,psi2,M,N,C) %古典显式格式求解抛物型偏微分方程 %[U x t]=PDEParabolicClassicalExplicit(uX,uT,phi,psi1,psi2,M,N,C) % %方程:u_t=C*u_xx 0 <= x <= uX,0 <= t <= uT %初值条件:u(x,0)=phi(x) %边值条件:u(0,t)=psi1(t), u(uX,t)=psi2(t)
2024-04-25 10:49:27 111KB 古典显式格式 Crank Nicolson 隐式格式
1
本文深入探讨了利用多目标粒子群算法进行选址定容优化的方法,特别关注于储能系统在其中的作用与出力分析。文章首先介绍了多目标粒子群算法的基本原理和选址定容问题的背景,接着详细阐述了如何通过该算法解决选址定容过程中的复杂问题,尤其是在考虑储能系统出力的情况下。此外,文章还提供了实际应用案例和效果评估,为读者展示了该方法的实用性和有效性。 适用人群: 本文适合电力系统规划、优化算法研究、储能技术应用等领域的学者、工程师和研究人员阅读。 使用场景: 当读者需要了解或应用多目标粒子群算法来解决选址定容问题,特别是在涉及储能系统出力分析时,本文可作为重要的参考资料。 目标: 本文旨在为读者提供一套完整的、基于多目标粒子群算法的选址定容优化方法,并通过对储能出力的深入分析,帮助读者更好地理解储能系统在选址定容中的重要作用。 关键词: 多目标粒子群算法、选址定容、储能系统、出力分析
2024-04-25 09:42:08 4.32MB matlab 多目标粒子群算法
1