lwMCMC轻量级马尔可夫链蒙特卡洛 由NumPy和Metropolis Hastings支持的轻型MCMC进行参数空间采样。 包装布局 许可证,适用于此软件包 README.md-您现在正在阅读的README文件 -先决条件安装该软件包,通过使用PIP 安装程序脚本 /-包含有关软件包安装和使用的文档 /-贝叶斯建模的用例 /-库代码本身 /-单元测试 案例1:利用贝叶斯推断进行实验地球物理建模 后验分布 等高线 MCMC先验坡度 通过幂律蠕变为自然中的冰致密实的幂律流模型恢复了参数约束(请参阅冰蠕变文献)。 网格条目显示了我们参数的一维后验分布,以及具有一个和两个sigma建模误差轮廓的成对投影。 在先验斜率参数为1.8±0.225的情况下,贝叶斯推断的斜率为1.70±0.17。 示例2:使用贝叶斯推断进行粒子衰减建模 后验分布 等高线 MCMC适合搭配 事先的 为粒子
1
提出了一种数据丢失贝叶斯网络参数学习的优化算法。期望最大化(EM)算法是常用的参数学习算法。 EM的最大似然估计(MLE)和最大后代估计(MAP)是局部估计,而不是全局估计,不容易实现全局最优。因此,本文提出了一种基于EM算法的点估计相对误差最小优化算法(EM-MLE-MAP)。仿真和实验结果表明,该算法在转子贝叶斯网络故障诊断中具有较好的精度,当损失率小于3%时,具有较高的诊断精度。
2021-12-26 18:58:54 278KB Bayesian Networks Data Missing
1
Bayesian and Frequentist Regression Methods
2021-12-22 14:18:36 9.79MB Bayesian and Frequentist Regression
1
概率推理、智能系统,贝叶斯网、马尔科夫网方面的经典书
2021-12-21 17:19:11 20.8MB Intelligent Systems. Reasoning; Bayesian
1
吉布斯采样matlab代码ORIE-6741贝叶斯机器学习项目 贝叶斯非参数时间序列数据的预测模型 Chawannut Prommin(),Serena Li(),Yutao Han() 纸张结构 抽象的 我们提出了一种新颖的贝叶斯非参数框架,用于具有模式发现和在线推理的时间序列数据建模。 我们尝试使用Indian Buffet过程和无限隐藏Markov模型进行自动模式或聚类发现。 然后,我们的模型使用一种新颖的框架,通过具有谱混合核函数的高斯过程回归和假设检验,来在线推断时间序列数据。 由于对簇而不是整个数据集进行评估,因此我们考虑了在线推理过程中模型的可伸缩性。 介绍 相关工作 方法 贡献 印度自助餐过程(IBP)发现簇数 无限隐马尔可夫模型(iHMM)聚类 光谱混合(SM)内核学习 聚类时间序列数据 在线推论 快速推断 实验结果 时间序列聚类 内核学习和卡方检验 模型精度评估 讨论 参考 代码结构 要运行的脚本的描述: 下面的MATLAB文件不包括使用GPyTorch在Python文件中完成的KISS-GP快速推断的实现。 MATLAB文件实质上包括除KISS-GP实现之外的所有
2021-12-18 11:03:22 1.94MB 系统开源
1
bayesian_dnns 具有的贝叶斯深层神经网络的实践与实验。 GMVAE 提出的高斯混合变分自动编码器的实现。 通过对生成模型使用高斯混合先验,其对不平衡数据的鲁棒性要比Kingma的m2模型高得多。 我还提到了 示例:MNIST不平衡 数据 标记的[标签:图片数量] [0:1000、1:10、2:10、3:10、4:10、5:100、6:70、7:40、8:50、9:30] 未贴标签总计50000张图像。 每个标签的采样率与标签数据相同(不平衡)。 验证总计10000张图片。 每个标签的采样率相等(平衡) 结果 金马的M2模型 潜在变量(维度0和1)和重建的图像。 GMVAE 潜在变量(维度0和1)和重建的图像。 您可以看到每个标签似乎都有自己的分布。
2021-12-17 10:13:33 630KB pytorch bayesian-deep-learning pixyz Python
1
pgmpy pgmpy是一个用于处理概率图形模型的python库。 支持的文档和算法列表在我们的官方网站使用pgmpy的示例: : 使用pgmpy的概率图形模型基础教程: : 我们的邮件列表位于 。 我们在社区聊天。 依存关系 pgmpy具有以下非可选依赖项: python 3.6或更高版本 网络X 科学的 麻木 火炬 一些功能还需要: tqdm 大熊猫 剖析 统计模型 作业库 安装 pgmpy在pypi和anaconda上都可用。 通过anaconda安装使用: $ conda install -c ankurankan pgmpy 通过pip安装: $ pip
1
之字形回旋镖 概述 马尔可夫链蒙特卡罗(MCMC)方法用于从概率分布中进行采样,例如贝叶斯模型中的后验分布。 在ZigZagBoomerang.jl中实现的分段确定性蒙特卡洛(PDMC)方法具有相同的目标,不同的是,此处的分布是通过粒子的连续运动而不是一次移动一个点来进行探索的。 在此,粒子在随机时间改变方向,并在确定性轨迹上移动(例如,沿着恒定速度的直线,请参见图片) 校准随机方向的变化,以使粒子的轨迹采样正确的分布; 从轨迹可以估算出感兴趣的量,例如后均值和标准差。 是否改变方向的决定仅需要评估偏导数,该偏导数依赖于很少的坐标-坐标在马尔可夫毯子中的邻域。 这样就可以使用Julia的多线程并行性(或其他形式的并行计算)来利用多个处理器内核。 约里斯·比尔肯(Joris Bierken)的“以及我们关于话语是ZigZagBoomerang.jl所涵盖方法的理论和应用的良好起点。
1
matlab代码影响 卡尔曼和贝叶斯过滤器的介绍性文字。 所有代码都是用Python编写的,而本书本身是使用Juptyer Notebook编写的,因此您可以在浏览器中运行和修改代码。 有什么更好的学习方法? “ Python中的卡尔曼和贝叶斯过滤器”看起来很棒! ...您的书正是我所需要的-艾伦·唐尼(Allen Downey),教授,也是O'Reilly的作者。 感谢您为发布有关Kalman过滤以及Python Kalman过滤库的介绍性文字所做的所有工作。 我们一直在内部使用它来向人们传授一些关键的状态估计概念,这是一个巨大的帮助。 -SpaceX的Sam Rodkey 现在,单击下面的活页夹或Azure徽章开始在线阅读: 什么是卡尔曼和贝叶斯滤波器? 传感器嘈杂。 世界上充满了我们想要测量和跟踪的数据和事件,但是我们不能依靠传感器来提供完美的信息。 我车上的GPS报告高度。 每次我在道路上经过同一点时,都会报告略有不同的海拔高度。 如果我两次称量相同的物体,我的厨房秤会给我不同的读数。 在简单的情况下,解决方案是显而易见的。 如果我的秤给出的读数略有不同,我可以取几个读数并取平
2021-12-12 10:31:18 21.41MB 系统开源
1