滚动轴承的运行状态对整机工作状态影响重大, 但目前其故障诊断方法存在依赖手工特征提取、鲁棒性不高等问题. 因此, 本文提出了一种基于改进的一维卷积神经网络(1D-CNN)和长短期记忆网络(LSTM)集成的滚动轴承故障诊断方法(1D-CNN-LSTM). 首先, 利用改进的1D-CNN-LSTM模型对滚动轴承6种不同的工作状态进行了分类识别实验, 实验结果表明提出的分类模型能够以较快的速度识别出滚动轴承的不同状态, 平均识别准确率达99.83%; 其次, 将提出的模型与部分传统算法模型进行对比实验, 结果表明所提方法在测试精度方面有较大优势; 最后, 引入迁移学习测试模型的鲁棒性和泛化能力, 实验结果表明提出的改进模型在不同工况下有较好的适应性和高效性, 模型有较强的泛化能力, 具备工程应用的可行性.
1
对振动信号进行奇异值分解去噪,然后提取包络谱频谱
1
为解决电机在变负载运行条件下滚动轴承振动信号故障的特征提取困难、故障诊断准确率低的问题,提出一种基于变步长粒子群的变分模态分解与贝叶斯网络相结合的滚动轴承故障诊断模型。通过变步长粒子群算法优化的变分模态分解与Hilbert变换,提取故障信息并离散化处理,构建贝叶斯网络故障诊断模型,对滚动轴承故障发生概率推理,并利用完备、不完备数据集以及噪声试验验证该方法的准确性。仿真结果表明,该方法能高效提取特征信息,实现对不确定信息的推理估计,提高滚动轴承故障诊断的准确率,在滚动轴承的故障诊断预测中具有较好的理论与应用前景。
1
利用BP神经网络进行故障诊断,内有西储大学的轴承数据,且对数据进行截取、分类以及特征提取等
1
信号预处理——零均值化 在测试中由数据采集所得的原始信号,在分析前需要进行预处理,以提高数据的可靠性和真实性,并检查信号的随机性,以便正确地选择分析处理方法。本设计中,我们采用零均值化处理。 零均值化处理又称中心化处理。信号的均值相当于一个直流分量,而直流信号的傅里叶变换是在 处的冲激函数,因此若不去除均值,在作信号谱分析时,将在 处出现一个大的谱峰,并会影响在 左右处的频谱曲线,使它产生较大的误差。 设采样数据为 (n=1,2,…,N),其均值通过下式计算: 用下式进行零均值化处理: 处理后, 就变为一个均值为零的新信号 (n=1,2,…,N)。
2021-11-22 15:17:42 2.79MB 故障诊断
1
结合小波分析及神经网络算法对轴承各种故障进行诊断鉴别
2021-11-20 21:41:42 2.47MB 故障诊断
1
基于Matlab的轴承故障诊断系统设计
2021-11-20 11:19:59 1.84MB
介绍了RBF神经网络的模型及原理,阐述了滚动轴承故障的机理;通过滚动轴承的故障特征数据,构建的RBF神经网络,实现了轴承的智能故障诊断。
2021-11-18 09:38:01 356KB RBF神经网络 故障诊断 滚动轴承
1
本程序能够实现滚动轴承的故障诊断和在线检测,用到了峭度值计算、小波变换、自相关计算等
1
局部均值分解(Local Mean Decomposition,简称LMD)方法是一种新的自适应时频分析方法,并成功运用于滚动轴承故障诊断中,但对噪声比较敏感。为消除噪声对诊断结果的影响,提出了一种小波包降噪与LMD相结合的滚动轴承故障诊断方法。该方法首先利用小波包去除信号中的噪声,然后,进行LMD分解,并将分解后PF分量与分解前信号的相关系数作为判断标准,剔除多余低频PF分量,最后,选取有效PF集进行功率谱分析,提取故障特征。通过仿真数据和真实滚动轴承数据的故障诊断实验,其结果验证了该方法的有效性。
2021-11-16 20:24:12 307KB 工程技术 论文
1