遗传算法GA优化支持向量机回归算法SVR,python写,自带数据集
2023-04-15 14:42:33 32KB 支持向量机 回归 python 数据集
1
这是一个用OPENCV编的支持向量机程序,很有用的,大家可以下来看看。
2023-04-14 13:51:07 138KB openCV的支持向量机程序
1
svm支持向量机python代码 在这个示例中,我们使用了 scikit-learn 库中的 datasets 模块来加载鸢尾花数据集。然后,我们使用 train_test_split 函数将数据集划分为训练集和测试集。接下来,我们创建了一个 SVM 分类器,并使用训练集对其进行训练。最后,我们使用测试集对其进行预测,并计算了分类器的准确率。 需要注意的是,在实际应用中,我们可能需要对数据集进行更多的预处理和特征工程,以提高模型的准确性和鲁棒性。
2023-04-13 20:13:24 14KB 支持向量机 python 软件/插件
1
SVM回归预测,机器学习算法
2023-04-13 11:13:28 30KB 支持向量机 算法 回归 机器学习
1
压缩包含一个完整的Qt控制台工程,注释纤细,调试运行通过,也可以直接移植到win32上。(工程中有两个主程序,main.cpp中样本数据格式为opencv的Mat矩阵。main1.c中样本为float型的二维数组。编译的时候把不同的主程序添加进工程即可。main1.cpp可以不要opencv的库。)
2023-04-12 21:20:46 1.16MB libsvm 支持向量机 分类器
1
系统相关介绍博客链接:https://blog.csdn.net/shooter7/article/details/129935028 摘要: 车牌识别是一项重要的模式识别研究方向,具有广泛的应用。它被视为安全和交通运行的核心技术,可用于自动收费、交通管制、边境保护、车辆盗窃等重要领域。然而,在某些情况下,由于车牌颜色不同而无法很好地工作。因此,车牌识别不仅具有广泛的应用,而且具有重要的研究意义。 本文提出了一种基于OpenCV和SVM的车牌识别系统。该系统通过对车牌图像进行预处理、特征提取和分类,实现对车牌的自动识别。具体来说,本文首先对车牌图像进行预处理,包括图像增强、去噪、二值化等操作,提高车牌图像的质量。然后,本文采用颜色特征、形状特征和纹理特征对车牌图像进行特征提取,提高车牌图像的识别准确性。最后,本文采用SVM算法对车牌图像进行分类,实现对车牌的自动识别。通过实验验证,本文所设计的车牌识别系统具有较高的识别准确性和速度,可以满足实际应用的需求。
2023-04-12 09:46:54 213.04MB opencv 机器学习 支持向量机 软件/插件
1
svm支持向量机python代码
2023-04-11 17:52:13 12KB SVM python
1
6种算法(线性回归、随机森林、支持向量机、BP神经网络、GRU、LSTM)对电力系统负荷进行预测。通过一个简单的例子。 各种算法(线性回归、随机森林、支持向量机、BP 神经网络、GRU、LSTM)用于电力系统负载预测/电力预测。
2023-04-11 12:09:30 726KB 预测模型 负荷预测 GRU LSTM
1
SVM故障诊断MATLAB代码
2023-04-07 00:48:43 93KB 支持向量机
1
近年来,文本的情感分析一直都是自然语言处理领域所研究的热点问题;微博作为一种短文本,用词精炼而简洁,富含观点、倾向和态度。因此,识别微博的情感倾向具有重要的现实意义。提出一种基于SVM和CRF的情感分析方法,使用多种文本特征,包括词、词性、情感词、否定词、程度副词和特殊符号等,并选用不同的特征组合,通过多组实验使情感分析效果最优。实验显示,选用词性、情感词和否定词的特征组合时,SVM模型的正确率达到88.72%,选用情感词、否定词、程度副词和特殊符号的特征组合时,CRF模型的正确率达到9044%。
1