电动汽车充电站多目标规划选址定容的Matlab程序代码实现:结合PSO与Voronoi图联合求解策略,电动汽车充电站选址定容Matlab程序代码实现。 在一定区域内的电动汽车充电站多目标规划选址定容的Matlab程序 使用PSO和Voronoi图联合求解。 ,关键词:电动汽车充电站;选址定容;Matlab程序代码实现;多目标规划;PSO;Voronoi图;联合求解。,Matlab程序实现电动汽车充电站多目标规划选址定容与PSO-Voronoi联合求解 在当代社会,随着环境问题的日益严峻和能源危机的逐步凸显,电动汽车作为新能源汽车的重要组成部分,得到了快速的发展和广泛的应用。然而,电动汽车的大规模普及离不开完善的充电基础设施,尤其是充电站的合理规划和建设。因此,电动汽车充电站的多目标规划选址定容问题,成为了学术界和产业界关注的焦点。 本研究提出了一种基于多目标规划的电动汽车充电站选址定容方法,并通过Matlab程序代码实现了这一策略。研究中引入了粒子群优化算法(PSO)和Voronoi图的联合求解策略,旨在实现充电站的最优布局。PSO算法是一种高效的群智能优化算法,通过模拟鸟群的觅食行为,实现问题的快速求解。Voronoi图是一种几何结构,能够在给定的空间分割中,找到每个充电站服务区域的最佳划分,从而保证服务覆盖的均匀性和连续性。 研究中还考虑了多目标规划的需求,即在满足电动汽车用户充电需求的同时,还需考虑充电站建设的经济性、环境影响以及社会影响等多方面的因素。通过构建一个综合评价体系,将这些目标统一在优化模型中,从而实现对充电站选址和定容的综合优化。 为实现上述目标,研究者编写了一系列Matlab程序代码,这些代码以模块化的方式组织,便于理解和应用。程序的编写基于Matlab强大的数学计算能力和数据处理能力,使得模型的求解更加高效和准确。在代码的实现过程中,研究者详细阐述了每一部分的功能和实现逻辑,确保了整个程序的可读性和可维护性。 此外,本研究还提供了相关的文献综述,对当前电动汽车充电站规划的理论和实践进行了深入分析。研究指出,现有的充电站规划研究大多集中在单目标优化上,而忽视了实际应用中的复杂性。本研究正是针对这一不足,提出了多目标规划的解决方案,强调了在充电站选址和定容时,必须考虑多种因素的综合影响。 本研究通过引入PSO算法和Voronoi图的联合求解策略,结合Matlab程序代码实现,为电动汽车充电站的多目标规划选址定容提供了一种新的思路和方法。该研究不仅具有重要的理论意义,也具有较强的实践应用价值,对于推动电动汽车产业的可持续发展具有积极的促进作用。
2025-10-19 18:04:54 249KB istio
1
文章探讨了基于遗传算法对斜齿轮进行多目标优化的方法,旨在同时减轻齿轮的质量并降低其传动中的振动及噪音。首先介绍了遗传算法的基本原理和运算流程,包括编码、初始化种群、适应度计算、选择、交叉、变异等关键步骤。接着建立了齿轮减振降噪和轻量化的优化目标函数,通过双质块双弹簧振动模型和齿轮体积计算公式推导出具体的数学表达式。然后构建了多目标优化函数,采用加权系数法将两个子目标函数合并为单一目标函数。确定了设计变量和约束条件,包括模数、螺旋角、齿数、齿宽系数等参数的取值范围以及接触应力和弯曲应力的性能约束。最后利用MATLAB优化工具箱中的遗传算法实现了优化过程,并对优化前后的齿轮性能数据进行了对比验证,结果显示齿轮的质量减少了39.6%,振动和噪音也有所改善,证明了优化设计方法的有效性。;
2025-10-19 16:09:13 1.55MB 遗传算法 多目标优化 MATLAB
1
内容概要:本文探讨了无人潜航器(AUV)路径跟踪控制的关键技术——多目标模型预测控制方法。首先介绍了传统路径跟踪控制方法的局限性,即仅关注单一目标如最短路径,而在复杂的海洋环境中,无人潜航器需要同时满足多个目标,如避障、保持深度和节能等。因此,多目标模型预测控制方法能够综合考虑这些不同甚至相互冲突的目标,提前预测系统未来的行为,从而做出更优的控制决策。接着,文章展示了用Python实现这一控制方法的代码示例,包括计算当前位置与目标路径距离的基础函数distance_to_path,预测下一时刻位置的函数predict_next_position,以及核心的多目标模型预测控制函数multi_objective_mpc。最后,详细解释了各个函数的功能和参数设置,强调了权重矩阵Q和R在平衡不同目标方面的重要作用。 适合人群:对无人潜航器路径跟踪控制感兴趣的科研人员和技术开发者,尤其是那些希望深入了解多目标模型预测控制方法的人群。 使用场景及目标:适用于研究和开发无人潜航器路径规划和控制系统,旨在提高无人潜航器在复杂海洋环境中的导航精度和效率。 其他说明:文中提供的代码仅为概念验证性质,实际应用时需要进一步优化和调整,以应对更加复杂的海洋环境和更高的性能要求。
2025-10-18 16:23:31 2.02MB
1
内容概要:本文介绍了基于模型预测控制(MPC)的微电网调度优化方法,并提供了相应的Matlab代码实现。文中还涉及多种优化算法和技术在不同工程领域的应用,如改进引导滤波器、扩展卡尔曼滤波器、多目标向日葵优化算法(MOSFO)、蛇优化算法(MOSO)等,重点聚焦于微电网多目标优化调度问题。通过MPC方法对微电网中的能源进行动态预测与优化调度,提升系统运行效率与稳定性,同时应对分布式电源不确定性带来的挑战。配套代码便于读者复现与验证算法性能。; 适合人群:具备一定电力系统或自动化背景,熟悉Matlab编程,从事新能源、智能优化或微电网相关研究的科研人员及研究生;; 使用场景及目标:①实现微电网在多目标条件下的优化调度;②处理分布式电源不确定性对配电网的影响;③学习并应用MPC控制策略于实际能源系统调度中;④对比分析不同智能优化算法在路径规划、调度等问题中的表现; 阅读建议:建议结合提供的Matlab代码与网盘资料,按主题逐步实践,重点关注MPC在微电网中的建模过程与优化机制,同时可拓展至其他智能算法的应用场景。
1
在计算机视觉领域,目标检测是一个核心任务,它涉及到识别出图像中所有感兴趣的物体,并精确地标定出它们的位置。本文所讨论的“人车目标检测-目标检测数据集”正是为了解决这一问题而存在的。该数据集主要面向的是城市交通场景中的人和车这两种目标,由于它们在日常交通监控中具有极高的重要性,因此对它们的检测能力要求甚高。 目标检测数据集通常包含了大量带有标签的图像,这些图像用于训练和测试目标检测模型。在此数据集中,“测试集”一词意味着该部分数据主要用于评估已训练模型的性能,即模型在未知数据上的表现情况。测试集通常不会用于模型的训练过程,以保证评估结果的公正性和有效性。 关于数据集的具体内容,虽然没有提供详细的图像列表,但从“test_images”这个名字可以推测,这些图像文件很可能包含城市道路、交叉路口或者停车场等典型场景,其中人和车作为目标对象被标注。每个目标对象周围会有边界框(bounding box)标记,这些边界框不仅标识出目标的位置,还指明了目标在图像中的大小和方向。 在构建目标检测数据集时,数据的多样性和代表性至关重要。数据集需要涵盖不同的天气条件、光照情况、视角以及目标大小和遮挡情况。此外,数据集的标注质量直接影响着模型训练的效果。标注需要准确无误,才能确保模型能够正确学习到目标的特征。 利用这样的数据集进行目标检测研究,可以应用各种成熟的算法,包括但不限于基于区域的检测算法(如R-CNN系列)、基于回归的检测算法(如SSD、YOLO系列)以及更先进的基于深度学习的检测方法。这些方法通过从大量带标注的图像中学习,能够自动识别出新图像中的人和车。 目标检测的应用场景非常广泛,包括但不限于智能交通系统、视频监控、自动驾驶汽车、移动设备应用等。在这些应用中,快速准确地检测到人和车的存在对于整个系统的决策至关重要。例如,在自动驾驶系统中,准确的行人和车辆检测是确保行车安全的基础;在交通监控中,车辆检测可以帮助实现交通流量的统计和分析。 “人车目标检测-目标检测数据集”为研究者们提供了一个专门针对行人和车辆的检测任务的测试平台。通过使用该数据集,研究人员可以测试和优化他们的目标检测算法,以期在现实世界的应用中达到更优的性能。
2025-10-16 13:36:00 32.03MB 目标检测 数据集
1
针对电力场景中输电线均压环的歪斜问题,本数据集提供了303张高精度标注图片,用于目标检测任务。数据集采用Pascal VOC格式和YOLO格式,每张图片都配备了对应的VOC格式xml文件和YOLO格式txt文件。VOC格式文件包含了图像的矩形框标注信息,而YOLO格式则为每张图片提供了对应的文本文件,其中标注了检测框的位置和类别信息。 该数据集被细分为两个类别,分别是“正常”(normal)和“歪斜”(skew)。在303张图片中,各类别标注的数量分别为:normal类161个标注框,skew类305个标注框,总计466个标注框。这些标注框通过labelImg标注工具绘制,使用矩形框对输电线均压环的位置进行了精确的标注。 数据集的使用注意事项包括:图片数量与标注数量一致,均为303个,且标注类别为2个。在使用这些图片进行模型训练时,需要注意到数据集是经过图片增强处理的,因此在下载之前应仔细查看图片预览以确保图片质量满足研究和开发需求。此外,开发者应明确数据集本身并不保证训练出的模型或权重文件的精度,但数据集所提供的图片和标注信息是准确且合理的。 数据集中的图片预览和标注例子对于理解标注规则和格式十分有帮助,这为研究人员和工程师在进行电力场景目标检测模型训练时提供了直观参考。通过研究和利用这个数据集,可以在电力设施维护、输电线路检测等应用场景中提高歪斜均压环的自动识别能力,进而提高电力系统的安全性和可靠性。
2025-10-14 20:44:47 1.97MB 数据集
1
内容概要:本文详细介绍了利用野火征途Pro FPGA开发板实现基于帧差法的运动目标检测与跟踪系统的全过程。首先,通过OV5640摄像头采集视频流并存储于DDR3内存中进行帧缓存。接着,采用Verilog编写帧差处理模块,计算相邻两帧之间的灰度差异,并通过二值化处理将差异结果转换为二进制图像。然后,利用边界扫描法对目标进行定位,最终通过TFT LCD、VGA和HDMI三种显示接口展示检测结果。文中还讨论了一些优化技巧,如使用Y通道代替RGB全量计算节省资源,以及解决OV5640摄像头在低光照条件下的噪点问题的方法。 适合人群:对FPGA开发有一定了解的研究人员和技术爱好者。 使用场景及目标:适用于需要进行运动目标检测与跟踪的应用场合,如安防监控、智能交通等领域。目标是帮助读者掌握如何在FPGA平台上构建高效的运动目标检测系统。 其他说明:文中提供了详细的代码片段和调试经验分享,有助于读者更好地理解和应用相关技术。同时提到未来可能引入YOLO算法进一步提升检测精度。
2025-10-13 20:23:37 878KB
1
数据集缺陷类型:划痕、凹痕、裂缝共1456张。 文件包括: Annotation:xml文件格式,共1456张。 images:所有缺陷图片jpg,1456张。 test:测试集图片jpg,100张。 val:验证集图片jpg,113张。 txt:标注图片YOLO格式的txt文件,1456个txt。 YOLO(You Only Look Once)是一种流行的实时目标检测系统,它通过单一神经网络直接从图像像素到边界框坐标和类别概率的映射来进行目标检测。YOLO的性能卓越,它可以在保证较高准确度的同时,实现快速的检测速度。这种特性使其在需要实时处理的应用场景中表现尤为出色,如自动驾驶、视频监控、工业检测等领域。 本数据集针对轴承缺陷检测而构建,包含1456张标注清晰的图像,这些图像涵盖了轴承在使用过程中可能出现的三种主要缺陷类型:划痕、凹痕和裂缝。这些缺陷类型对于轴承的性能和寿命有重要影响,能够被及时检测出来对于保障机械设备的稳定运行具有重要意义。 数据集中的图像全部以jpg格式存储,包括了标注图像和未标注图像。标注图像配有YOLO格式的标注信息,即xml文件和txt文件。xml文件格式用于描述图像中每个目标的位置和类别信息,而txt文件则包含了YOLO格式的标注数据,这种格式通常包含类别ID、目标中心点坐标以及目标的宽度和高度信息,使得YOLO模型能够直接读取并用于训练和预测。除此之外,数据集还划分为训练集、测试集和验证集。训练集用于模型的学习过程,测试集用于评估模型性能,验证集则用于模型调优和参数设置。 利用这样的数据集进行训练,目标检测模型能够学会识别和分类轴承缺陷。这对于提高轴承质量控制和预防性维护具有重要的实际应用价值。由于轴承是各种机械设备中的关键部件,因此缺陷检测的准确性直接关系到整个系统的安全性和可靠性。 值得注意的是,数据集的质量直接影响着模型训练的效果。因此,在收集数据时,要确保图像多样性、清晰度以及标注的准确性,以减少过拟合的风险,并提高模型的泛化能力。此外,合理的数据划分也是必要的,确保测试集和验证集能够有效地反映模型在未见数据上的表现,从而达到准确评估模型性能的目的。 本数据集为研究和开发基于YOLO的轴承缺陷检测模型提供了一个良好的起点。通过这个数据集,研究人员可以训练出更为精确和高效的检测模型,以应对工业生产中轴承缺陷检测的挑战,从而提高工业生产的自动化水平和产品的质量保证。
2025-10-13 15:10:26 158.67MB 目标检测 数据集 yolo
1
学生行为StudentBehavior​​Dataset 数 据 集共1810张学生课堂 图像,包括“ Focused 专注听讲”、“ Reading 阅读 ”、“ Hand Movement 手部动作 ”、 “ Head Down 低头 ”、 “ Looking Aside 侧视 ”和“ Sleeping 睡觉 ” 等六种 类型,每张图像 的大小为640像素x640 像素。图像数据集划分为1268 张图像作为训练集,361 张图像作为验证集,181张图像作为测试集。
2025-10-12 20:55:00 561.5MB 数据集
1
数据集名称:课堂行为检测数据集(基于YOLOv8的目标检测) 数据集描述: 本数据集面向基于 YOLOv8 的课堂行为目标检测任务,旨在实现对学生在教室内典型行为(如举手、睡觉、阅读、书写、使用手机、交谈、转头等)的精确识别与定位。数据采集自真实教学场景,涵盖多个时间段、角度与环境条件,具备良好的多样性、代表性和实际应用价值,适用于智慧教育、课堂行为分析、教学管理等多个场景。 数据特点: 标注类型:采用YOLO格式,提供边界框坐标与行为类别标注; 行为类别:覆盖典型课堂行为(支持自定义扩展类别); 图像数量:训练集-3192张; 分辨率:统一/多种分辨率(如有特殊说明可补充); 适用模型:适配YOLOv8及主流目标检测模型; 应用场景:智慧教室、教学管理、课堂行为分析、人机交互等。 应用价值: 该数据集可广泛应用于智慧教育领域,有助于构建基于计算机视觉的课堂行为分析系统,提升教学过程的可视化管理水平,实现课堂纪律自动评估、学生参与度分析等功能,助力教育信息化发展。
2025-10-11 17:17:41 265.08MB 目标检测 yolo 课堂行为
1