spss数据与过程
2022-12-04 11:03:55 1.06MB spss
1
NetTerm详细说明书,包括命令行调用脚本说明,脚本API,常用控制符等内容。
2022-12-04 00:40:09 257KB NetTerm 说明 命令行 脚本
1
当用户进行数据传输时则占用信道,无数据传输时则把信道资源让出来,这样不仅极大地提高了无线频带资源的利用率,同时也提供了灵活的差错控制和流量控制,正因如此,GPR
1
不足及有误之处请大家批评指正,必当虚心改过
2022-12-02 22:21:22 1.77MB Centos LVS 集群 服务器
1
一个简单的网格搜索框架 网格搜索就是穷举法,对所有可能的参数组合都带入程序,进行尝试。 模型参数对应:SARIMA(p,d,q)(P,D,Q)m,对于模型来说并不是所有输入参数都是有效的, 如季节周期参数m不能为0,当m=0时,会导致SARIMAX函数报错。 以SARIMA模型为示例,介绍了如何对模型的参数进行网格搜索来找到较优参数 SARIMA是对AR,MA,ARIMA模型的改进,添加了季节周期的因素在里面 在网格搜索配置超参数的时候也是一个学习点
单变量时间序列预测开发深度学习模型_python源码+数据+超详细注释 内容: 多层感知器模型 卷积神经网络模型_CNN 递归神经网络模型_LSTM 递归神经网络模型_CNN+LSTM 递归神经网络模型_ConvLSTM2D 本文使用了5种不同的网络模型,实现了一元序列的自回归 1.MLP:多层感知机 2.CNN:卷积 3.LSTM:长短周期 4.CNN+LSTM卷积+长短周期 5.ConvLSTM2D卷积+长短周期 并且分别比较了5中模型的预测效果,CNN模型相对来时是最好的。 深度学习在一元时间序列预测中表现并不佳
2022-12-02 19:28:16 28KB MLP CNN LSTM ConvLSTM2D
基于KNN的室内运动时间序列分类项目源码+数据+超详细注释 通过布置在不同房间的传感器获取到穿戴设备的人的移动数据,预测人的移动轨迹(人在哪个房间),场景见文件夹内示意图 内容包含: 1.数据说明见IndoorMovement\数据说明.txt 2.如何用pandas加载csv,并且画数数据的折线图,柱状图 3.用最小二乘法对数据进行线性拟合,并画出图像 4.数据特征工程:所有MovementAAL_RSS文件中最小的文件包含19条数据,所以默认以19作为数据集维度,故每个文件取最后19条,根据MovementAAL_DatasetGroup中的分组对应关系,将MovementAAL_RSS作为输入,MovementAAL_target作为输出,将文件按关联关系拼成train和test集合 5.将构建好的,维度为19的数据分别代入7种模型进行评估准确性,7种模型分别为LogisticRegression,KNN,DecisionTreeClassifier,SVM,RandomForestClassifier,GradientBoostingClassifier
基于KNN实现使用脑电波预测眼睛睁闭项目源码+数据+超详细注释 任务:根据获取的脑电波的数据,预测人的眼睛是睁开的开始闭上的 内容包含: 1.做数据基本预览时发现数据有部分异常值存在 2.对数据异常值进行处理,当数据值超过三倍标准差时,作为异常值删除掉 3.使用K折交叉重构数据,以便对数据进行重复验证,令K=10,将数据分成10组 4.用KNN模型对数据进行预测,model = KNeighborsClassifier(n_neighbors=3)表示设置KNN的参数K=3 5.本文后续讨论了对于有时间序列特点的数据使用KNN可能具有的缺陷,对打乱顺和正常顺序的数据进行预测结果是有较大差异的,因为KNN是找到最相似的数据聚类,但对于具有时间序列特征的数据,在高频取数的数据集中,连续时间上相邻的数据一定是最为相似的。
基于单变量+多变量逻辑回归实现根据环境因素预测房间入住率_项目源码+数据+超详细代码注释 任务:通过"Temperature","Humidity","Light","CO2","HumidityRatio"等环境数据预测房间是否在使用 内容包含: 1.用多变量进行逻辑回归预测 2.用单变量进行逻辑回归预测