MATLAB时间序列回归Data_TSReg5数据集
2021-10-22 09:09:31 26KB 时间序列 数据集
1
该测试基于 Lyapunov 指数对噪声时间序列的混沌动力学进行测试。 输入是观察到的时间序列的向量,它可以是随机的或混沌的,通常时间序列有噪声,因此该代码基于隐藏混沌图的神经网络近似来测试李雅普诺夫指数的正性。 此测试使用雅可比方法计算 Lyapunov 指数,无需指定 ODE 或仅给出观察向量的可疑映射。 有关详细信息,请参阅我的论文: http : //www.sciencedirect.com/science/article/pii/S2352711015000096
2021-10-20 21:06:30 8KB matlab
1
在图上可以看到最近的轨迹的发散。 如果确定了曲线的线性范围,代码就可以计算出最大的lyapunov指数。 该代码已使用 Rosenstein 文章的结果进行了测试。
2021-10-20 20:57:46 2KB matlab
1
谐波的matlab代码python中时间序列的谐波分析 的答案,源自 。 Brain dump 和有关该过程的更多文档位于 。
2021-10-20 15:45:23 8KB 系统开源
1
2011 哈工 博 基于回声状态网络的非线性时间序列预测方法研究
2021-10-20 15:32:46 4.98MB 回声状态网络
1
此例程计算时间序列 x 和时间序列 y 之间的全局小波相干性,其中全局相干性测量两个时间序列之间作为频率(或周期)函数的关系。 使用蒙特卡罗方法针对红噪声背景计算统计显着性。 在使用此功能之前,用户应下载 A. Grinsted 编写的代码,可从http://noc.ac.uk/using-science/crosswavelet-wavelet-coherence获得。 可以在以下参考资料中找到全局一致性的应用: Justin A. Schulte、Raymond G. Najjar、Ming Li,气候模式对美国中大西洋地区水流的影响,水文学杂志:区域研究,第 5 卷,2016 年 3 月,第 80-99 页,ISSN 2214-5818, http: //dx.doi.org/10.1016/j.ejrh.2015.11.003。
2021-10-20 13:34:08 2KB matlab
1
Pytorch Forecasting旨在通过神经网络简化实际案例和研究中的时间序列预测。 具体来说,该软件包提供了有关“迈向数据科学”的文章,介绍了该软件包并提供了背景信息。 Pytorch Forecasting旨在通过神经网络简化实际案例和研究中的时间序列预测。 具体来说,该软件包提供了一个时间序列数据集类,该类抽象了处理变量转换,缺失值,随机子采样,多个历史记录长度等的基础模型。基本模型类提供了时间序列模型的基本训练以及登录tensorboa
2021-10-19 14:01:02 3.38MB Python Deep Learning
1
MATLAB时间序列回归Data_TSReg4数据集
2021-10-18 17:12:03 12KB Data_TSReg4 数据集
1
使用VAR模型和复杂网络测度对多变量时间序列进行因果分析
2021-10-18 15:03:02 2.75MB 研究论文
1
时间序列分类被用于各种应用程序,导致许多用于时间序列分析的数据挖掘技术的发展。 在广泛的时间序列分类算法中,最近的研究正在考虑深度学习方法对时间序列分类任务的影响。 相关出版物的数量需要文献计量研究来探索最突出的关键词、国家、来源和研究集群。 论文对2010-2019年Scopus数据库中时间序列分类相关文献进行文献计量分析,通过关键词共现分析,生成时间序列分类研究热门关键词的可视化网络结构,并进行深度学习通过对书目进行额外查询,已将其引入为最常见的主题。 该论文继续探索最近用于时间序列分类的深度学习方法的发表趋势。 研究期间的文献计量分析揭示了每年的出版物数量、生产和合作国家、来源增长率、出现最多的关键词和研究合作。 研究领域已分为三大类,即深度神经网络的不同框架、遥感中的不同应用以及时间序列分类任务的信号处理。 定性分析通过详细描述突出引用率最高的论文类别。
2021-10-18 13:15:16 1.55MB Time-Series Classification Deep
1