matlab14 基于SVM的数据分类预测——意大利葡萄酒种类识别
2021-12-26 13:21:57 37KB
1
基于OpenCV实现口罩检测功能,可以实时检测人脸是否佩戴口罩,并使用QT设计GUI界面。需要环境:openVINO(加速)、OpenCV4、QT5
2021-12-25 18:25:02 4.94MB 口罩检测 OpenCV QT SVM
1
sex_classifier_dlib_transfer_learning 使用dlib人脸识别模型作为特征提取器的性别分类器的简单演示 通过使用dlib人脸识别模型,我们可以使用sklearn ML框架进行转移学习以对人脸性别进行分类。 由于缺乏公开的亚洲性别数据集,该过渡数据集全是亚洲人。 但是,我有很多私人照片,因此我不会共享数据集。 如果您自己被trainig迷住了,则可以使用Google照片搜寻器下载图像并标记自己的名字 如果您想使用,我还提供了简单的预训练模型。 这是评估指标 precision recall f1-score su
2021-12-25 16:30:40 647KB python svm scikit-learn face-recognition
1
针对传统钢轨检测方法不能满足线路检修的需要,提出了一种基于计算机视觉的钢轨扣件检测算法,运用投影法和特定区域像素点扫描统计相结合的方法定位扣件位置,使用灰度特征和HOG特征描述扣件特征向量,并利用Chi开方距离分类器进行特征提取。实验结果表明,该算法具有一定的有效性和可行性。
1
迁移学习旨在利用大量已标签源域数据解决相关但不相同的目标域问题. 当与某领域相关的新领域出现时, 若重新标注新领域, 则样本代价昂贵, 丢弃所有旧领域数据又十分浪费. 对此, 基于SVM算法提出一种新颖的迁移学习算法—–TL-SVM, 通过使用目标域少量已标签数据和大量相关领域的旧数据来为目标域构建一个高质量的分类模型, 该方法既继承了基于经验风险最小化最大间隔SVM的优点, 又弥补了传统SVM不能进行知识迁移的缺陷. 实验结果验证了该算法的有效性.
2021-12-24 13:29:10 383KB 迁移学习|分类|支持向量机
1
人工智能课程作业,工具为 jupyter notebook,使用SVM对手写体数字图片分类,其中包含运行代码,运行截图,内容涵盖完整。
1
0积分下载,代码运行效果图见压缩包
2021-12-23 09:05:48 83KB matlab
1
编写了 Matlab 代码以将叶子分类为以下类型之一:'Alternaria Alternata'、'Anthracnose'、'Bacterial Blight'、'Cercospora Leaf Spot' 和 'Healthy Leaves'。 分类由 Multiclass SVM 完成(一对一) 怎么跑?? 1.将文件夹'Leaf_Disease_Detection_code'放在Matlab路径中,并将所有子文件夹添加到该路径中2. 运行 DetectDisease_GUI.m 3.在GUI中,单击“加载图像”,然后从Manu's Disease数据集中加载图像,单击“增强对比度”。 4. 接下来点击Segment Image,然后输入包含ROI的cluster no,即只有疾病受影响的部分或健康的部分5. 点击分类结果。 然后测量准确性(在这种情况下是健康与所有疾病)。 代码
2021-12-22 23:33:23 867KB matlab
1