卷积神经网络(CNN)的文本分类 这是一个使用CNN对文本文档/句子进行分类的项目。 您可以在和的博客条目中找到类似方法的精彩介绍。 我的方法与Denny和Yoon Kim的原始论文[1]相似。 您也可以在找到Yoon Kim的实现。 ***更新***-2019年12月15日:版本0.2.0的更改 我已将代码更新为TensorFlow2。此外,我在jupyter笔记本中进行了一些更改: 删除Yelp数据集 为IMDB添加TensorFlow数据集 ***更新***-2019年5月17日:0.1.0版中的更改 模型: 将字级与基于字符的输入相结合。 char输入ist是可选的,可以用于进一步
2021-12-10 12:48:35 209KB nlp deep-learning text-classification tensorflow
1
face-py-faster-rcnn, 基于 R CNN的人脸检测 基于高速cnn的实时人脸检测这个库包含了使用更快的r cnn的人脸检测源文件。 它是基于出色的py-faster-rcnn 库开发的。有关技术细节,请参阅这里的technial报告 。 快速r-cnn最初描述在 NIPS 2015纸 。
2021-12-10 12:18:03 701KB 开源
1
基于numpy的卷积神经网络的手写实现,准确率超98%高精度实现,适合新手加深对CNN内部结构实现的理解。主要模块实现在block中。torchvision用于加载MNIST数据集,也可以自定义数据集。
1
matlab的egde源代码卷积神经网络实用 由Andrea Vedaldi和Andrew Zisserman撰写的牛津视觉几何学小组的实用计算机视觉。 从doc/instructions.html开始。 请注意,此实用程序需要编译(包括)MatConvNet库。 这应该自动发生(请参阅setup.m脚本),但是请确保在实验室计算机上编译成功。 包装内容 该实践包括以下四个文件中组织的四个练习: exercise1.m第1部分:CNN基础 exercise2.m第2部分:衍生物和反向传播 exercise3.m第3部分:学习小型CNN exercise4.m第4部分:学习CNN识别字符 exercise5.m 5.m-第5部分:使用预先训练的CNN 实用程序在MATLAB中运行并使用。 该软件包包含以下MATLAB函数: extractBlackBlobs.m :从图像中提取黑色斑点。 tinycnn.m :实现一个非常简单的CNN。 initializeCharacterCNN.m :初始化CNN以识别字符。 decodeCharacters.m :可视化字符CNN的输出。 imsm
2021-12-09 10:34:25 1.32MB 系统开源
1
深度学习是机器学习的一个子集,旨在用类似于人类的逻辑持续分析数据。 它使用称为人工神经网络 (ANN) 的算法的分层结构。 它们主要用于医学诊断,以做出疾病预测、机器人手术和放射治疗等关键决策。 疾病预测包括识别和分类阿尔茨海默病。 它是痴呆症的最常见原因,影响全球约 4600 万人。 该病有几个阶段,分为轻度和重度。 症状包括记忆信息的能力下降、口语和写作能力下降。 许多机器学习算法技术如决策树分类器、独立分量分析、线性判别分析(LDA)被用来根据疾病的阶段预测疾病,但识别信号阶段的精度并不高。 在这项工作中,提出了一种基于深度学习的技术,该技术通过使用卷积神经网络 (CNN) 来提高分类的准确性。 这项工作分析脑电图 (EEG) 信号,使用快速傅立叶变换 (FFT) 提取特征并通过 CNN 对疾病进行分类。
2021-12-09 10:34:18 716KB Alzheimer’s Disease Electroencephalogram
1
假新闻检测 参考相关作品,并根据越南文文章建立基于LSTM和CNN的虚假新闻检测模型。
2021-12-08 17:16:32 164KB JupyterNotebook
1
卷积神经网络tiny_cnn代码
2021-12-08 10:36:27 12.62MB 卷积神经网络
1
NR法matlab代码比康 基于卷积神经网络(BIECON)的盲图像评估器是一种使用CNN的无参考图像质量评估方法。 该代码实现了以下论文中描述的系统: J. Kim和S. Lee,“完全深盲图像质量预测器”,《 IEEE信号处理选定主题期刊》,第1卷。 11号1,第206–220页,2017年2月。 先决条件 该代码是使用Theano 0.9,CUDA 8.0和Windows开发和测试的。 生成本地质量得分图 将BASE_PATH设置为每个数据库的实际根路径。 集FR_MET_BASEPATH和FR_MET_SUBPATH在gen_local_metric_scores.m 。 对于每个数据库,数据将存储在“ FR_MET_BASEPATH + FR_MET_SUBPATH ”中。 使用Matlab运行gen_local_metric_scores.m 。 我们默认提供一个SSIM指标。 环境设定 设置数据库路径: 对于每个数据库,集BASE_PATH在以下文件中的每个数据库的实际的根路径: IQA_BIECON_release/data_load/LIVE.py , IQA_BIE
2021-12-08 09:50:40 95KB 系统开源
1
用java实现k-近邻算法分类器的完整工程代码,测试结果正确
2021-12-07 22:57:32 61KB java 机器学习 k-近邻 cnn
1
数据集包括了2979张佩戴口罩的人脸图片,2994张未佩戴口罩的人脸图片,最重要的是还包括了2994张未正确佩戴口罩的图片(也就是那些戴口罩漏鼻子的)!把这部分也作为未佩戴口罩的数据集,在极高的实际意义。所有图片均是由人脸识别模块切割出,只包含人脸这一小部分图像,对训练的准确性有极大的提高,还进行了旋转操作实现数据增强。 配套项目代码及数据集预览参考博客:https://blog.csdn.net/weixin_45981224/article/details/120526885
2021-12-07 21:41:36 221.26MB CNN 口罩识别 未正确佩戴口罩 口罩数据集