Twitter_Data_Analysis:有关Twitter数据的文本处理和情感分析的完整指南
2021-12-15 15:58:24 26KB r twitter sentiment-analysis wordcloud
1
Sentiment_Analysis_Deep_Learning:使用深度学习(CNN)进行情感分析
2021-12-14 00:45:40 21.69MB JupyterNotebook
1
R:使用R进行实时推文的情感分析和可视化
2021-12-13 19:55:18 900KB visualization r twitter sentiment-analysis
1
[情感分析] Yelp数据集的综合情感分析 对Yelp_Dataset的综合情感分析 下载Yelp数据集以进行大规模数据分析,包括情绪,多年分布和一个月分布。 包括: - 情绪分析。 数据清理。 数据预处理。 数月,数年的正面,负面,中性评论分布。 下载输出文件夹,以了解此python程序的确切功能。
2021-12-13 00:44:29 1.96MB Python
1
在线社交网络上的谣言检测研究最后一年研究项目的源代码。 抽象 这项研究旨在确定诸如Twitter和Facebook之类的在线社交网络上谣言的关键特征。 鉴于互联网作为新闻来源的普及性以及互联网上信息的不断增长,自动识别谣言的重要性正变得越来越重要。 开发了一组定性和定量指标,以更好地了解每个搜索查询的特征及其生成的结果数据集。 定量指标表明数据集的大小,而定性指标则评估数据集的新闻/谣言纯度和上下文纯度。 指标将指示数据集从数据集中剖析不同上下文所需的预处理工作量,并使其对进一步分析更加有用。 利用计算机科学和社会科学的现有文献,进行了三个实验: 数据集的总体情绪概况是什么? 在以谣言为中
2021-12-10 16:07:26 4.41MB python machine-learning twitter sentiment-analysis
1
中文 八分类 贝叶斯 训练文件为ysr.py 可以生成两个模型并保存 测试文件为test.ipynb 偷个懒在notebook上写的 代码很好懂,写的也很简单,随便拿去改~
2021-12-07 21:24:57 1.89MB python 附件源码 文章源码
1
使用NLTK进行情感分析 使用NLTK应用于不同数据集的情感分析算法 该存储库包含几个子项目,这些子项目是如何从不同的数据集中执行情感分析的示例。 每个文件夹包含一个不同的项目。 ##使用的工具和安装说明(Ubuntu):### 1。 Python第一个示例已在Linux 64位体系结构下使用Python 2.7.9进行了测试。 但是,为了使用特定的“统计”包,需要使用Python3。 Python3已经随附了默认的Ubuntu安装,因此可以在终端上运行它: $ python3 Python 3.4.3 (default, Mar 26 2015, 22:03:40) [GCC 4.9.2] on linux Type "help", "copyright", "credits" or "license" for more information. >>> ### 2。 安装几个软件
2021-12-05 18:18:58 10.45MB Python
1
文字cnn 该代码实现了模型的。 图1:用于句子分类的CNN架构图 要求 Python 3.6 TensorFlow 1.4 (Singleton Config) tqdm 要求 项目结构 通过初始化项目 . ├── config # Config files (.yml, .json) using with hb-config ├── data # dataset path ├── notebooks # Prototyping with numpy or tf.interact
2021-11-27 14:47:41 2.44MB nlp deep-learning sentiment-analysis tensorflow
1
Text_Sentiment_Analyzer Self-learning record of text sentiment analysis Environment:python3.5 + windows10 1、create_new_sentiment_dict_and_predict_by_using_rules 项目 搜集了知网、百度、搜狗、台湾大学等多个平台的情感词典,对它们进行合并去重后得到新的较为完整的情感词典集合; 在处理文本问题上,首先对文本评论进行分词、去停用词等预处理,其次采用基于规则的方法(统计文本中情感词数及否定词和程度副词情况),对文本评论进行情感分析。 2、create_new_sentiment_dict_by_using_LDA 项目 以微博评论语料为基础,采用LDA主题模型的方法来寻找和情感种子词语义相近的词作为新的情感词,其中情感种子词是人工从知网情感
2021-11-25 15:00:13 23.6MB Python
1
该数据集包括了四个领域的中文评论:笔记本电脑、汽车、相机和手机,评论属于 二分类 任务及正面或负面。可被用作于 自然语言处理 中情感分类任务。 camera_label.txt camera_sentence.txt car_label.txt car_sentence.txt car_target.txt notebook_label.txt notebook_sentence.txt notebook_target.txt phone_label.txt phone_sentence.txt phone_target.txt camera_target.txt
2021-11-24 10:17:27 105KB 数据集
1