Verifika is a software tool that helps to locate and resolve formal errors in bilingual translation files and translation memories. It detects formatting, consistency, terminology and spelling errors in the target language. All detected errors are included in a report which allows to conveniently correct them with no external software tool (such as TagEditor) required. Verifika features an internal editor for reviewing and amending translations. For many error types, Verifika also offers an auto-correction feature. Its powerful search feature allows you to perform further corrections if necessary. Verifika supports the following bilingual file format(s): SDL Trados® TRADOStag Documents (.ttx) SDL XLIFF (.sdlxliff) memoQ (.xlf, .mqxliff, .mqxlz) Other XLIFF variants are also supported TMX 1.4b (older formats are also supported, but we do recommend to use 1.4b) WordFast TXML (.txml) Idiom and LionBridge XLZ and XLIFF Bilingual MS Word files (Trados, WordFast, LionBridge) (read-only, you will have to correct segments in MS Word) Terminology lists in Excel (.xls, .xlsx)
2021-10-28 14:09:05 45.92MB 本地化工具 QA tool Trados
1
QA的过程检查单,内有多个sheet,覆盖了每个功能管理过程域的过程检查单
2021-10-25 14:08:56 24KB QA 过程 检查单 工程管理
1
这是一个敏捷QA过程方面的指导,对Scrum项目有帮助
2021-10-20 17:45:00 561KB 测试
1
3_现场管理与QA现场监控.pptx
2021-10-16 16:00:35 276KB 技术
3现场管理与qa现场监控.pptx
2021-10-16 16:00:34 278KB 技术
简单的变形金刚 该库基于HuggingFace的库。 使用简单的Transformers,您可以快速训练和评估Transformer模型。 初始化模型,训练模型和评估模型仅需要三行代码。 技术支持 序列分类 代币分类(NER) 问题回答 语言模型微调 语言模型训练 语言生成 T5型号 Seq2Seq任务 多模态分类 对话式AI。 文本表示生成。 目录 设置 与conda 从安装Anaconda或Miniconda Package Manager 创建一个新的虚拟环境并安装软件包。 conda create -n st python pandas tqdm conda activate st如果使用cuda: conda install pytorch>=1.6 cudatoolkit=11.0 -c pytorch否则: conda install pytorch cpuonly
1
COSMIC-FFP官方文档最新版本,软件测量必备
2021-10-08 15:49:32 1.98MB COSMIC-FFP 软件测量 QA
1
中文医学NLP公开资源整理:术语集/语料库/词向量/预训练模型/知识图谱/命名实体识别/QA/信息抽取/模型/论文/etc
2021-10-07 19:28:26 4KB 自然语言处理
1
Dureader-Bert 2019 Dureader机器阅读理解单模型代码。 哈工大讯飞联合实验室发布的中文全词覆盖BERT 只需将要加载的预训练模型换为压缩包内的chinese_wwm_pytorch.bin,即从_pretrained函数中weights_path和config_file即可。 谷歌发布的中文伯特与哈工大发布的中文全词覆盖BERT在Dureader上的效果对比 模型 ROUGE-L BLEU-4 谷歌bert 49.3 50.2 哈工大伯特 50.32 51.4 由于官方没有指定测试集,实验数据是在验证集上跑出来的 许多人询问,说明一下: 1,数据处理是自己写
2021-09-26 14:01:37 86.97MB nlp qa pytorch transfer-learning
1
地下停车场模型 unity模块化停车场模型QA Modular Parking 1.01 所支持的Unity版本:5.5.3 及以上版本 QA Modular Parking is a completely modular kit with more than 100 objects that allows you to build your own parking underground with any number of floors and populate it with all necessary props. Main features: - completely modular (includes modular interiors, modular ventilation, modular pipes, cables sets etc); - PBR; - more than 100 unique objects; - atlased textures; - pre-builded demo scene; - customizable wet floor shader; - good for VR;
2021-09-25 10:40:19 201.79MB parking 模块化3D模型
1