在用tensorflow做一维的卷积神经网络的时候会遇到tf.nn.conv1d和layers.conv1d这两个函数,但是这两个函数有什么区别呢,通过计算得到一些规律。 1.关于tf.nn.conv1d的解释,以下是Tensor Flow中关于tf.nn.conv1d的API注解: Computes a 1-D convolution given 3-D input and filter tensors. Given an input tensor of shape [batch, in_width, in_channels] if data_format is “NHWC”, or [b
2022-01-02 21:24:25 64KB c conv ens
1
总环境科学期刊(Science Total Environment)endnote格式
2021-12-30 20:37:52 11KB 总环境科学期刊
1
一.数据集准备 数据集共1400张机场或湖泊的图片,因此此分类为简单的二分类问题,通过CNN对数据集进行模型训练,得出相关指标。 数据集如下: 机场 湖泊 二.读取数据集 数据集路径 导入相关模块 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt import pathlib #使用pathlib对路径对象进行管理 import random 构造路径对象,获取所有图片路径,并打乱数据集 pic_dir = 'D:/tensorflowDataSet/2_class' pic_ro
2021-12-30 16:45:14 301KB ens low ns
1
批量归一化 在对神经网络的优化方法中,有一种使用十分广泛的方法——批量归一化,使得神经网络的识别准确度得到了极大的提升。 在网络的前向计算过程中,当输出的数据不再同一分布时,可能会使得loss的值非常大,使得网络无法进行计算。产生梯度爆炸的原因是因为网络的内部协变量转移,即正向传播的不同层参数会将反向训练计算时参照的数据样本分布改变。批量归一化的目的,就是要最大限度地保证每次的正向传播输出在同一分布上,这样反向计算时参照的数据样本分布就会与正向计算时的数据分布一样了,保证分布的统一。 了解了原理,批量正则化的做法就会变得简单,即将每一层运算出来的数据都归一化成均值为0方差为1的标准高斯分布。这
2021-12-26 10:45:59 68KB ens low ns
1
1.写作背景 Tensorflow官方在2018年宣布,正式发布支持树莓派版本的Tensorflow,编者开始直接用: pip install tensorflow 进行安装,在安装成功后使用import进行验证时: import tensorflow as tf 出现了如下所示报错: E tensorflow/core/platform/hadoop/hadoop_file_system.cc:132] HadoopFileSystem load error: libhdfs.so: cannot open shared object file: No such file or dir
2021-12-25 21:10:28 119KB ens fl flow
1
一、CIFAR-10简介 CIFAR-10数据集包含10个类别,共计60000张 32×32 3通道彩色图像。其中每个类别包含6000张图像:训练图像50000张,测试图像10000张。 数据集被分为五个训练批次和一个测试批次。每个测试批次有10000张图像,为每个类别各随机挑出1000张构成;训练批次为随机打乱的剩余图像。某些训练批次可能出现一个类型的图像多于另一个类型的情况,但总体而言,训练批次包含每个类型恰好5000张。 二、说明 图片原格式为32*32 3通道 第一次卷积:卷积核大小为3*3,输出32*32 32通道 第一次池化:最大值池化,输出为16*16 32通道 第二次卷积:卷
2021-12-24 12:22:41 191KB cifar-10 ens fl
1
import matplotlib.pyplot as plt from tensorflow import keras import tensorflow as tf import matplotlib as mpl import pandas as pd import numpy as np import sklearn import time import sys import os # 加载数据 from sklearn.datasets import fetch_california_housing housing = fetch_california_housing() print
2021-12-23 20:55:51 31KB ens fl flow
1
1. 人工神经网络 1.1 神经网络结构 人工神经网络(简称神经网络)是模拟人类大脑神经元构造的一个数学计算模型。 一个神经网络的搭建,需要满足三个条件。 输入和输出 权重(w)和阈值(b) 多层感知器的结构 1.2 神经网络运作过程 其中,最困难的部分就是确定权重(w)和阈值(b)。必需有一种方法,可以找出答案。 这种方法就是试错法。其他参数都不变,w(或b)的微小变动,记作Δw(或Δb),然后观察输出有什么变化。不断重复这个过程,直至得到对应最精确输出的那组w和b,就是我们要的值。这个过程称为模型的训练。 因此,神经网络的运作过程如下。 确定输入和输出 找到一种或多种算法,可以从输入得到
2021-12-23 14:58:04 264KB ens fl flow
1
TensorFlow 2.0测试版在今年春季发布,新版本比1.x版本在易用性上有了很大的提升。但是由于2.0发布还没有多久,现在大部分论文的实现代码都是1.x版本的,所以在学习TensorFlow的过程中同时安装1.x和2.0两个版本是很有必要的。 下面是具体操作 首先需要安装Anaconda 然后进入Anaconda prompt(未避免安装失败,最好以管理员身份运行) 安装第一个版本的tensorflow: 现在是默认环境,输入要安装的第一个tensorflow版本:pip install tensorflow==版本号 pip install tensorflow==2.0.0b1
2021-12-14 17:40:44 212KB ens low ns
1
我就废话不多说了,大家还是直接看代码吧! model = keras.models.Sequential([ #卷积层1 keras.layers.Conv2D(32,kernel_size=5,strides=1,padding=same,data_format=channels_last,activation=tf.nn.relu,kernel_regularizer=keras.regularizers.l2(0.01)), #池化层1 keras.layers.MaxPool2D(pool_size=2,strides=2,padding=same), #卷积层
2021-12-11 12:35:12 67KB AS ens keras
1