MNIST和USPS手写数字识别算法: 朴素贝叶斯和随机森林 bayes-mnist : 多项式朴素贝叶斯和伯努利朴素贝叶斯解决MNIST数据集 bayes-usps : 多项式朴素贝叶斯和伯努利朴素贝叶斯解决USPS数据集 random-forest-mnist : 随机森林解决MNIST数据集 random-forest-usps : 随机森林解决USPS数据集
2021-12-13 19:08:03 23.05MB mnist bayes JupyterNotebook
1
初学机器学习,使用python实现的朴素贝叶斯算法实现数字识别,使用mnist数据集训练和测试
2021-12-13 19:07:23 2KB 朴素贝叶斯 naïve bayes 机器学习
1
Efron 教授 2010 年的一本新书Large-Scale Inference 通过此书可以感受到古典几何学与现代统计学的结合之美 获取此书不易 希望大家抓紧时间下载!
1
潜在客户贝叶斯 贝叶斯的PROSPECT叶片光学特性模型反演。
2021-12-08 17:34:24 141.98MB Shell
1
这是native bayes朴素贝叶斯的python代码实现,代码中有注释,并且有数据集,方便阅读和理解,刚涉及机器学习想要自己做实验的可以下载看看。
2021-12-05 19:58:11 25KB native bayes
1
网络流量异常的检测和分类 实验基于 数据集的版本。 1.先决条件 1.1。 安装项目依赖项 不 姓名 版本 描述 1个 3.8.8 程式语言 2个 0.24.1 Python机器学习工具 3 1.19.5 Python科学计算工具 4 1.2.2 Python中的数据分析和数据处理工具 5 3.3.4 用Python可视化 6 0.11.1 统计数据可视化 7 5.8.0 跨平台库,用于检索Python中正在运行的进程和系统利用率(CPU,内存,磁盘,网络,传感器)的信息 8 0.3.7 可视化库 9 -- 用于模型序列化的Python对象序列化 1.2。 下载并提取数据集 下载的较轻版本(存档大小-8.8 GB) 较轻的版本仅包含带标签的流,而没有pcaps文件 提取档案(大小-大约44 GB) 2.安装项目 克隆此仓库 安装缺少的库 打开config.py并
1
贝叶斯CNN 卷积神经网络中的实现。 一个卷积层,每个滤波器的权重分布 整个CNN的全贝叶斯视角 结果 分别使用LeNet-5和3Conv3FC在MNIST和CIFAR-10上的结果
2021-12-01 09:44:23 285KB Python
1
Bayes GMM:贝叶斯高斯混合模型 概述 有限贝叶斯高斯混合模型 (FBGMM) 和无限高斯混合模型 (IGMM) 都是使用折叠吉布斯采样实现的。 示例和测试代码 运行make test来运行单元测试。 运行make test_coverage以检查测试覆盖率。 查看 examples/ 目录中的示例。 依赖关系 NumPy 和 SciPy: ://www.numpy.org/ 鼻子: : 参考资料和注释 如果您使用此代码,请引用: H. Kamper、A. Jansen、S. King 和 S. Goldwater,“使用固定维度声学嵌入对语音段进行无监督词法聚类”,IEEE 口语技术研讨会 (SLT) 会议录,2014 年。 在代码中,引用了以下内容: KP Murphy,“高斯分布的共轭贝叶斯分析”,2007 年,[在线]。 可用: : KP Murphy,
2021-11-30 13:26:09 56KB Python
1
基于Spark mlib 的垃圾邮件分类 实现文档 使用Scala实现
2021-11-29 18:18:37 283KB bayes
1
Naive Bayes算法
2021-11-27 19:06:43 9KB 机器学习
1